Skip to main content
Log in

Peculiarities of propagation of electroinductive waves in magnetic metamaterials

  • Electromagnetic Waves in Metamaterials
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The coupling of doubly split ring resonators in the GHz range has been experimentally, analytically, and numerically studied in order to design a metamaterial with dominant electrical coupling as a model of nanoscale metamaterials. An example of propagation of GHz electroinductive waves in a metamaterial is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Shamonina, “Slow Waves in Magnetic Metamaterials: History, Fundamentals and Applications,” Phys. Status Solidi B. 245(8), 1471 (2008).

    Article  ADS  Google Scholar 

  2. O. D. Vol’yan and A. I. Kuz’michev, Negative Refraction ofWaves: Introduction into Physics and Technology of Electromagnetic Metamaterials (Avers, Moscow, 2012) [in Russian].

    Google Scholar 

  3. F. Bilotti and L. Sevgi, “Metamaterials: Definitions, Properties, Applications, and FDTD-Based Modeling and Simulation,” Int. J. RF Microwave Computer-Aided Eng. 22(4), 422 (2012).

    Article  Google Scholar 

  4. A. Radkovskaya, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, E. Shamonina, L. Solymar, “Resonant Frequencies of a Combination of Split Rings: Experimental, Analytical and Numerical Study,” Microw. Opt. Tech. Lett. 46(5), 473 (2005).

    Article  Google Scholar 

  5. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, Oxford, 2009).

    Google Scholar 

  6. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magneto-Inductive Waveguide,” Electron. Lett. 38(8), 371 (2002).

    Article  Google Scholar 

  7. E. Shamonina, “Magnetoinductive Polaritons: Hybrid Modes of Metamaterials with Interelement Coupling,” Phys. Rev. B. 85(15), 155146 (2012).

    Article  ADS  Google Scholar 

  8. A. Radkovskaya, E. Tatartschuk, O. Sydoruk, E. Shamonina, C. J. Stevens, D. J. Edwards, and L. Solymar, “Surface Waves at an Interface of Two Metamaterial Structures with Interelement Coupling,” Phys. Rev. B. 82(4), 045430 (2010).

    Article  ADS  Google Scholar 

  9. E. Tatartschuk, A. Radkovskaya, E. Shamonina, and L. Solymar, “Generalized Brillouin Diagrams for Evanescent Waves in Metamaterials with Interelement Coupling,” Phys. Rev. B. 81(11), 115110 (2010).

    Article  ADS  Google Scholar 

  10. O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-Like Dispersion Curves of Magnetoinductive Waves,” Appl. Phys. Lett. 87(7), 072501 (2005).

    Article  ADS  Google Scholar 

  11. A. A. Radkovskaya, V. N. Prudnikov, O. A. Kotelnikova, G. S. Palvanova, V. V. Prokopjeva, A. S. Andreenko, P. N. Zakharov, A. F. Korolev, and A. P. Sukhorukov, “Experimental Study of Phonon-Like Dispersion in Biatomic Magnetic Metamaterials in the MHz Range,” Bull. Russ. Acad. Sci. Phys. 78(2), 136 (2014).

    Article  Google Scholar 

  12. A. Radkovskaya, O. Sydoruk, M. Shamonin, E. Shamonina, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Experimental Study of a Bi-Periodic Magnetoinductive Waveguide: Comparison with Theory,” IET Microwaves, Antennas & Propagation. 1(1), 80 (2007).

    Article  Google Scholar 

  13. F. Hesmer, E. Tatartschuk, O. Zhuromskyy, A. Radkovskaya, M. Shamonin, T. Hao, C. J. Stevens, G. Faulkner, D. J. Edwards, and E. Shamonina, “Coupling Mechanisms for Split Ring Resonators: Theory and Experiment,” Phys. Status Solidi B. 244(4), 1170 (2007).

    Article  ADS  Google Scholar 

  14. A. A. Radkovskaya, V. N. Prudnikov, O. A. Kotel’nikova, and A. P. Sukhorukov, “Waves in Magnetic Metamaterials with Strong Coupling of Elements,” Phys. Wave Phenom. 21(1), 41 (2013) [DOI: 10.3103/S1541308X13010081].

    Article  ADS  Google Scholar 

  15. A. Radkovskaya, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, E. Shamonina, and L. Solymar, “An Experimental Study of the Properties of Magnetoinductive Waves in the Presence of Retardation,” J. Magn. Magn. Mater. 300(1), 29 (2006).

    Article  ADS  Google Scholar 

  16. E. Tatartschuk, N. Gneiding, F. Hesmer, A. Radkovskaya, and E. Shamonina, “Mapping Inter-Element Coupling in Metamaterials: Scaling Down to Infrared,” J. Appl. Phys. 111(9), 094904 (2012).

    Article  ADS  Google Scholar 

  17. A. A. Radkovskaya, G. S. Pal’vanova, E. I. Lebedeva, V. N. Prudnikov, O. A. Kotel’nikova, P. N. Zakharov, A. F. Korolev, and A. P. Sukhorukov, “Experimental Study of the Orientation Anisotropy of Interaction Between Meta-Atoms in Discrete Magnetic Metamaterials in the GHz Range,” Bull. Russ. Acad. Sci. Phys. 77(12), 1401 (2013).

    Article  Google Scholar 

  18. A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. J. Stevens, D. J. Edwards, and E. Shamonina, “Dimer and Polymer Metamaterials with Alternating Electric and Magnetic Coupling,” Phys. Rev. B. 84(12), 125121 (2011).

    Article  ADS  Google Scholar 

  19. A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. J. Stevens, D. J. Edwards, and E. Shamonina, “Dimer and Polymer Metamaterials with Both Electric and Magnetic Coupling,” in Proceedings of the 5th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials’2011) (Barcelona, Spain, 2011), p. 751.

    Google Scholar 

  20. P. Petrov, A. Radkovskaya, and E. Shamonina, “Retrieval of Electric and Magnetic Coupling Coefficients,” in Proceedings of the 9th International Congress on Advanced ElectromagneticMaterials in Microwaves and Optics (Metamaterials’2015) (Oxford, Great Britain, 2015), p. 259.

    Google Scholar 

  21. A. Radkovskaya, L. Li, E. Edwards, D. J. Edwards, E. Shamonina, and L. Solymar, “Near-Field Superdirectivity for Coupled Dimers ofMeta-Atoms,” in Proceedings of the 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials’2014) (Copenhagen, Denmark, 2014), p. 271.

    Google Scholar 

  22. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-Slit Split-Ring Resonators at Optical Frequencies: Limits of Size Scaling,” Opt. Lett. 31(9), 1259 (2006).

    Article  ADS  Google Scholar 

  23. A. Radkovskaya and E. Shamonina, “Band Structures of Mono-and Diatomic Metamaterials with Inter-Element Coupling,” Proceedings of the 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials’2013) (Bordeaux, France, 2013), p. 79.

    Google Scholar 

  24. V. Delgado, O. Sydoruk, E. Tatartchuk, R. Marques, M. J. Freire, and L. Jelinek, “Analytical Circuit Model for Split Ring Resonators in the Far Infrared and Optical Frequency Range,” Metamaterials. 3(2), 57 (2009).

    Article  ADS  Google Scholar 

  25. S. V. Kiryushechkina, “Study of the Coupling between Elements of Magnetic Metamaterials with Dominant Electric Coupling in the GHz Range,” in Proceedings of the 33rd International Science Conference of Students, Postgraduates, and Young Scientists “Lomonosov-2016” (Faculty of Physics, Moscow State University, Moscow, 2016), p. 210 [in Russian].

    Google Scholar 

  26. O. Zhuromskyy, E. Shamonina, and L. Solymar, “2D Metamaterials with Hexagonal Structure: Spatial Resonances and Near Field Imaging,” Opt. Exp. 13(23), 9299 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kiriushechkina.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiriushechkina, S.V., Kotel’nikova, O.A. & Radkovskaya, A.A. Peculiarities of propagation of electroinductive waves in magnetic metamaterials. Phys. Wave Phen. 25, 101–106 (2017). https://doi.org/10.3103/S1541308X17020042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X17020042

Navigation