Skip to main content
Log in

Plasma Electrolytic Carburising of Metals and Alloys

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The diffusion saturation of metals and alloys with carbon under the conditions of electrolysis plasma has been successfully studied for decades due to new possibilities and a number of advantages. Those include a high processing speed at which the duration of carburising is several minutes, combining with quenching in the same electrolyte without reheating, a possibility of local processing of some parts of components, and the use of environmentally friendly and inexpensive aqueous solutions. To date, electrolyte compositions and processing modes for various steels and titanium alloys have been proposed, as well as new information on the mechanism of the formation of a gaseous-plasma saturating medium and the regularities of carbon saturation. Investigation data obtained by many research groups needs analysis and synthesis. This review discusses the physical and chemical aspects of plasma electrolytic carburising, as well as the conditions and results of its practical usage. Attention is paid to the influence of the main factors of diffusion saturation with carbon on the achieved values of microhardness, roughness, wear resistance, and corrosion resistance of the processed materials under various test conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.

Similar content being viewed by others

REFERENCES

  1. Asimov, I., The Near East: 10,000 Years of History, Boston: Houghton Mifflin, 1968.

    Google Scholar 

  2. Lakhtin, Yu.M. and Leont’eva, Metallovedenie (Metal Science), Moscow: Mashinostroenie, 1990.

  3. Kunst, H., Haase, B., Malloy, J.C., Wittel, K., et al., Metals, surface treatment, in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley, 2012, p. 44. https://onlinelibrary.wiley.com/doi/pdf/10.1002/14356 007.a16_403.pub2.

  4. Gurevich, Yu.G. and Lyapina, V.A., RF Patent 2036243, 1995.

  5. Shipko, A.A., Rudenko, S.P., Val’ko, A.L., and Chichin, A.N., Lit’e Metall., 2016, vol. 83, no. 2, pp. 104–109.

    Google Scholar 

  6. Jumadin, M.H., Abdulah, B., Ismail, M.H., Alias, S.K., et al., Key Eng. Mater., 2017, vol. 740, pp. 93–99.https://doi.org/10.4028/www.scientific.net/KEM.740.93

    Article  Google Scholar 

  7. Stepanov, M.S., Dombrovskii, Yu.M., and Pustovoit, V.N., Met. Sci. Heat Treat., 2017, vol. 59, nos. 5–6, pp. 308–312.https://doi.org/10.1007/s11041-017-0148-3

    Article  Google Scholar 

  8. Siambun, N.J., Liew, W.Y.H., Chen, G.Z., Jewell, D.A., et al., Adv. Mater. Res., 2012, vol. 576, pp. 264–267.https://doi.org/10.4028/www.scientific.net/AMR.576.264

    Article  Google Scholar 

  9. Chen, W., Feng, P., Dong, L., Ahangarkani, M., et al., Surf. Coat. Technol., 2018, vol. 353, pp. 300–308.https://doi.org/10.1016/j.surfcoat.2018.08.088

    Article  Google Scholar 

  10. Czerwinski, F., Thermochemical treatment of metals, in Heat Treatment: Conventional and Novel Applications, London: InTechOpen, 2012, chap. 5. https://doi.org/10.5772/51566

  11. Khimicheskaya entsiklopediya (Chemical Encyclopedia), Zefirov, N.S., Ed., Moscow: Bol’shaya Rossiiskaya Entsiklopediya, 1998, vol. 5, p. 461.

    Google Scholar 

  12. Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A., and Dowey, S.J., Surf. Coat. Technol., 1999, vol. 122, pp. 73–93.https://doi.org/10.1016/S0257-8972(99)00441-7

    Article  Google Scholar 

  13. Parfenov, E.V., Yerokhin, A., Nevyantseva, R.R., Gorbatkov, M.V., et al., Surf. Coat. Technol., 2015, vol. 269, pp. 2–22.https://doi.org/10.1016/j.surfcoat.2015.02.019

    Article  Google Scholar 

  14. Aliofkhazraei, M., Sabour Rouhaghdam, A., and Gupta, P., Crit. Rev. Solid State Mater. Sci., 2011, vol. 36, pp. 174–190. http://www.tandfonline.com/doi/abs/https://doi.org/10.1080/10408436.2011.593269.10.1080/10408436.2011.593269

    Article  Google Scholar 

  15. Sengupta, S.K., Plasma Chem. Plasma Proc., 2017, vol. 37, no. 4, pp. 897–945.https://doi.org/10.1007/s11090-017-9804-z

    Article  Google Scholar 

  16. Krivenko, A.G., Manzhos, R.A., and Kotkin, A.S., High Energy Chem., 2018, vol. 52, no. 32, pp. 272–273.https://doi.org/10.1134/S0018143918030074

    Article  Google Scholar 

  17. Krivenko, A.G., Manzhos, R.A., Kochergin, V.K., Malkov, G.V., et al., High Energy Chem., 2019, vol. 53, no. 3, pp. 254–260.https://doi.org/10.1134/S0018143919030111

    Article  Google Scholar 

  18. Kochergin, V.K., Manzhos, R.A., Kotkin, A.S., and Krivenko, A.G., High Energy Chem., 2018, vol. 54, no. 3, pp. 227–232.https://doi.org/10.1134/S0018143920030091

    Article  Google Scholar 

  19. Zhao, H.P., He, Y.D., Kong, X.H., and Gao, W., Mater. Lett., 2007, vol. 61, pp. 4916–4919.https://doi.org/10.1016/j.matlet.2007.03.081

    Article  Google Scholar 

  20. Suminov, I.V., Belkin, P.N., Epel’del’d, A.V., Lyudin, V.B., et al., Plazmenno-elektroliticheskoe modifitsirovanie poverkhnosti metallov i splavov (Plasma-Electrolytic Modification of the Surface of Metals and Alloys), Moscow: Tekhnosfera, 2011, vol. 2.

  21. Belkin, P.N., Yerokhin, A.L., and Kusmanov, S.A., Surf. Coat. Technol., 2016, vol. 307, pp. 1194–1218.https://doi.org/10.1016/j.surfcoat.2016.06.027

    Article  Google Scholar 

  22. Garbarz-Olivier, J. and Guilpin, C., J. Chim. Phys., 1975, vol. 72, no. 2, pp. 207–214.https://doi.org/10.1051/jcp/1975720207

    Article  Google Scholar 

  23. Belkin, P.N., Ganchar, V.I., and Petrov, Yu.N., Dokl. Akad. Nauk SSSR, 1986, vol. 291, no. 5, pp. 1116–1119.

    Google Scholar 

  24. Shadrin, S.Yu., Belkin, P.N., and Kusmanov, S.A., Plasma Chem. Plasma Proc., 2020, vol. 40, no. 2, pp. 549–570.https://doi.org/10.1007/s11090-020-10062-6

    Article  Google Scholar 

  25. Shadrin, S.Yu. and Belkin, P.N., Int. J. Heat Mass Transfer, 2012, vol. 55, pp. 179–186.https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.001

    Article  Google Scholar 

  26. Yerokhin, A., Mukaeva, V.R., Parfenov, E.V., Laugel, N., et al., Electrochim. Acta, 2019, vol. 312, pp. 441–456.https://doi.org/10.1016/j.electacta.2019.04.152

    Article  Google Scholar 

  27. Hickling, A. and Ingram, M.D., Trans. Faraday Soc., 1964, vol. 60, pp. 783–793.https://doi.org/10.1039/tf9646000783

    Article  Google Scholar 

  28. Wu, J., Wang, K., Fan, L., Dong, L., et al., Surf. Coat. Technol., 2017, vol. 313, pp. 288–293.https://doi.org/10.1016/j.surfcoat.2017.01.109

    Article  Google Scholar 

  29. Garbarz-Olivier, J. and Guilpin, C., C. R. Acad. Sci. (Paris), 1973, vol. 277, no. 4, pp. 195–198.

    Google Scholar 

  30. Wu, J., Xue, W., Wang, B., Jin, X., et al., Surf. Coat. Technol., 2014, vol. 245, pp. 9–15.https://doi.org/10.1016/j.surfcoat.2014.02.024

    Article  Google Scholar 

  31. Wu, J., Wang, B., Zhang, Y., Liu, R., et al., Mater. Chem. Phys., 2016, vol. 171, pp. 50–56.https://doi.org/10.1016/j.matchemphys.2015.09.047

    Article  Google Scholar 

  32. Wu, J., Fan, L., Dong, L., Deng, J., et al., Mater. Chem. Phys., 2017, vol. 199, pp. 289–284.https://doi.org/10.1016/j.matchemphys.2017.07.011

    Article  Google Scholar 

  33. Wu, J., Deng, J., Dong, L., and Hou, D., Surf. Coat. Technol., 2018, vol. 338, pp. 63–68.https://doi.org/10.1016/j.surfcoat.2018.01.080

    Article  Google Scholar 

  34. Wu, J., Liu, R., Wang, B., Yang, C., et al., Surf. Coat. Technol., 2015, vol. 269, pp. 119–124.https://doi.org/10.1016/j.surfcoat.2014.12.024

    Article  Google Scholar 

  35. Paulmier, T., Bell, J.M., and Fredericks, P.M., Surf. Coat. Technol., 2007, vol. 201, no. 21, pp. 8771–8781.https://doi.org/10.1016/j.surfcoat.2006.07.066

    Article  Google Scholar 

  36. Samsonov, G.V. Zhunkovskii, G.L., in Khimiko-termicheskaya obrabotka metallov i splavov (Thermochemical Treatment of Metals and Alloys), Minsk: Bel. Politekh. Inst., 1974, pp. 3–11.

  37. Belkin, P.N., Surf. Eng. Appl. Electrochem., 2010, vol. 46, no. 6, pp. 558–569.https://doi.org/10.3103/S1068375510060049

    Article  Google Scholar 

  38. Vanin, V.S., Elektron. Obrab. Mater., 1975, no. 1, pp. 53–55.

  39. Vanin, V.S., Met. Sci. Heat Treat., 1968, vol. 10, pp. 55–59.https://doi.org/10.1007/BF00653047

    Article  Google Scholar 

  40. Vanin, V.S., Elektron. Obrab. Mater., 1980, no. 2, pp. 38–39.

  41. Inoue, K., US Patent 3 840 450, 1974.

  42. Eichorn, E., HTM, Haerterei-Tech. Mitt., 1968, vol. 23, no. 2, pp. 110–115.

    Google Scholar 

  43. Tarakci, M., Korkmaz, K., Gencer, Y., and Usta, M., Surf. Coat. Technol., 2005, vol. 199, nos. 2–3, pp. 205–212.https://doi.org/10.1016/j.surfcoat.2005.02.117

    Article  Google Scholar 

  44. Çavuşlu, F. and Usta, M., Appl. Surf. Sci., 2011, vol. 257, no. 9, pp. 4014–4020.https://doi.org/10.1016/j.apsusc.2010.11.167

    Article  Google Scholar 

  45. Ioshinori, T., Mech. Technol., 1977, vol. 25, no. 8, pp. 118–119.

    Google Scholar 

  46. Inoue, K. and Shima, Y. Trans. Iron Steel Inst. Jpn., 1970, vol. 10, no. 5, pp. 360–368.https://doi.org/10.2355/isijinternational1966.10.360

    Article  Google Scholar 

  47. Inoue, K. and Kaneko, H., JPN Patent 44 1049, 1979.

  48. Rezaei, A., Shokuhtar, A., Asadi, M., Hosseinzadeh, M.M., et al., Defect Diffus. Forum, 2006, vols. 258–260, pp. 26–31.

    Google Scholar 

  49. Yaghmazadeh, M. and Dehghanian, C., Plasma Process. Polym., 2009, vol. 6, pp. S168–S172.https://doi.org/10.1002/ppap.200930410

    Article  Google Scholar 

  50. Wu, J., Liu, R., Xue, W., Wang, B., et al., Appl. Surf. Sci., 2014, vol. 316, pp. 102–107.https://doi.org/10.1016/j.apsusc.2014.07.193

    Article  Google Scholar 

  51. Skakov, M., Batyrbekov, E., Zhurerova, L., and Scheffler, M., Appl. Mech. Mater., 2013, vols. 423 426, pp. 824–827.https://doi.org/10.4028/www.scientific.net/AMM.423-426.824

    Article  Google Scholar 

  52. Skakov, M., Bayatanova, L., and Sheffler, M., Adv. Mater. Res., 2013, vol. 601, pp. 74–78 .https://doi.org/10.4028/www.scientific.net/AMR.601.74

    Article  Google Scholar 

  53. Kombaev, K.K., Kylyshkanov, M.K., and Lopukhov, Yu.I., Zh. Sib. Fed. Univ., 2009, vol. 4, no. 2, pp. 394–399.

    Google Scholar 

  54. Skakov, M., Yerygina, L., and Scheffler, M., Appl. Mech. Mater., 2014, vols. 446–447, pp. 142–145.

    Google Scholar 

  55. Kurbanbekov, Sh.R., Modification of the structure and mechanical properties of the surface layers of steel 12Cr18Ni10Ti during electrolytic-plasma treatment, PhD Thesis, Ust-Kamenogorsk, 2014. https://docplayer.ru/53099339-Kurbanbekov-sherzod-rustambekovich.html.

  56. Hao, J., Liu, B., and Chen, H., Hot Work Technol., 2007, vol. 12. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJGY200712019.htm.

  57. Xue, W., Jin, Q., Zhu, Q., and Wu, X., J. Aeronaut. Mater., 2010, vol. 30, no. 4, pp. 38–42.

    Google Scholar 

  58. Skakov, M., Yerbolatova, G., Kantai, N., and Scheffler, M., Adv. Mater. Res., 2014, vols. 1044–1045, pp. 67–70 .https://doi.org/10.4028/www.scientific.net/AMR.1044-1045.67

    Article  Google Scholar 

  59. Aliofkhazraei, M. and Sabour Rouhaghdam, A., Surf. Coat. Technol., 2010, vol. 205, pp. S51–S56 .https://doi.org/10.1016/j.surfcoat.2010.04.010

    Article  Google Scholar 

  60. Aliofkhazraei, M., Morillo, C., Miresmaeli, R., and Sabour Rouhaghdam, A., Surf. Coat. Technol., 2008, vol. 202, pp. 5493–5496.https://doi.org/10.1016/j.surfcoat.2008.06.067

    Article  Google Scholar 

  61. Belkin, P.N. and Kusmanov, S.A., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 6, pp. 531–546.https://doi.org/10.3103/S106837551606003X

    Article  Google Scholar 

  62. Duradzhi, V.N., Mokrova, A.M., and Lavrova, T.S., Elektron. Obrab. Mater., 1984, no. 5, pp. 60–62.

  63. Duradzhi, V.N. and Parsadanyan, A.S., Nagrev metallov v elektrolitnoi plazme (Heating of Metals in Electrolytic Plasma), Chisinau: Shtiintsa, 1988.

  64. Kusmanov, S.A., Shadrin, S.Yu., and Belkin, P.N., Surf. Coat. Technol., 2014, vol. 258, pp. 727–733.https://doi.org/10.1016/j.surfcoat.2014.08.005

    Article  Google Scholar 

  65. Komarov, A.O. and Belkin, P.N., Izv. VUZov, Poroshk. Metall. Funkts. Pokrytiya, 2008, no. 2, pp. 46–49.

  66. Zhirov, A.V., Komarov, A.O., Danilov, V.V., and Shorokhov, S.A., Surf. Eng. Appl. Electrochem., 2012, vol. 48, no. 3, pp. 289–291.https://doi.org/10.3103/S1068375512030143

    Article  Google Scholar 

  67. Belkin, P., Naumov, A., Shadrin, S., Dyakov, I., et al., Adv. Mater. Res., 2013, 704, pp. 37–42.https://doi.org/10.4028/www.scientific.net/AMR.704.37

    Article  Google Scholar 

  68. Belkin, P.N., Dyakov, I.G., Zhirov, A.V., Kusmanov, S.A., et al., Prot. Met. Phys. Chem., 2010, vol. 46, no. 6, pp. 715–720.https://doi.org/10.1134/S2070205110060158

    Article  Google Scholar 

  69. Rakhimyanov, Kh.M. and Eremina, A.S., in Trudy II Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Innovatsii v mahsinostroenii” (Proc. II Int. Sci.-Pract. Conf. “Innovations in Machine Engineering”), Kemerovo, 2011, pp. 406–411. https://elibrary.ru/item.asp?id=21292407.

  70. Kusmanov, S.A., D’yakov, I.G., and Belkin, P.N., Vopr. Materialoved., 2009, no. 4, pp. 7–14.

  71. Alekseev, Yu.G., Niss, V.S., Korolev, A.Yu., and Pashuto, A.E., Nauka Tekh., 2013, no. 6, pp. 20–24.

  72. Roessner, E., Marx, G., Wicht, H., Suchotin, A., et al., DDR Patent 0152144, 1981.

  73. Andrei V., Vlaicu G., Fulger M., Ducu C., et al., Roman. Rep. Phys., 2009, vol. 61, no. 1, pp. 95–104.

    Google Scholar 

  74. Belikhov, A.B. and Belkin, P.N., Elektron. Obrab. Mater., 1998, nos. 5–6, pp. 23–31.

  75. Belkin, P.N., Kusmanov, S.A., Dyakov, I.G., Komissarova, M.R., et al., Surf. Coat. Technol., 2016, vol. 307, pp. 1303–1309.https://doi.org/10.1016/j.surfcoat.2016.04.057

    Article  Google Scholar 

  76. Komissarova, M.R., Kusmanov, S.A., Belkin, P.N., D’yakov, I.G., et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2016, vol. 59, no. 11, pp. 100–105.

    Google Scholar 

  77. Kusmanov, S.A., Dyakov, I.G., Belkin, P.N., and Parfenyuk, V.I., Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 1, pp. 1–6.https://doi.org/10.3103/S1068375517010094

    Article  Google Scholar 

  78. Zhirov, A.V., D’yakov, I.G., and Belkin, P.N., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2010, vol. 53, no. 2, pp. 89–93.

    Google Scholar 

  79. Inoue, K., J. Jpn. Inst. Met., 1969, vol. 33, no. 7, pp. 755–760.https://doi.org/10.2320/jinstmet1952.33.7_755

    Article  Google Scholar 

  80. Nie, X., Tsotsos, C., Wilson, A., Yerokhin, A.L., et al., Surf. Coat. Technol., 2001, vol. 139, pp. 135–142 .https://doi.org/10.1016/S0257-8972(01)01025-8

    Article  Google Scholar 

  81. Kusmanov, S.A., Kusmanova, Yu.V., Smirnov, A.A., and Belkin, P.N., Mater. Chem. Phys., 2016, vol. 175, pp. 164–171.https://doi.org/10.1016/j.matchemphys.2016.03.011

    Article  Google Scholar 

  82. Wu, J., Xue, W., Jin, X., Wang, B., et al., Appl. Phys. Lett., 2013, vol. 103, art. ID 031905.https://doi.org/10.1063/1.4813830

    Article  Google Scholar 

  83. Kusmanov, S.A., Kusmanova, Yu.V., Naumov, A.R., and Belkin, P.N., J. Mater. Eng. Perform., 2015, vol. 24, no. 8, pp. 3187–3193.https://doi.org/10.1007/s11665-015-1578-y

    Article  Google Scholar 

  84. Inoue, K., US Patent 3 098 151, 1963.

  85. Fushimi, Sh., US Patent 4 131 492, 1978.

  86. Kurbanbekov, S., Skakov, M., Baklanov, V., and Karakozov, B., Mater. Test., 2017, vol. 59, no. 4, pp. 361–365.https://doi.org/10.3139/120.111014

    Article  Google Scholar 

  87. Skakov, M., Zhurerova, L., and Scheffler, M. Adv. Mater. Res., 2013, vol. 601, pp. 79–83 .https://doi.org/10.4028/www.scientific.net/AMR.601.79

    Article  Google Scholar 

  88. Skakov, M., Bayatanova, L., and Sheffler, M. Key Eng. Mater., 2013, vols. 531–532, pp. 242–245.

    Google Scholar 

  89. Lin, N., Xie, R., Zhou, P., Ma, Y., et al., Surf. Rev Lett., 2016, vol. 23, no. 4, art. ID 1630002.https://doi.org/10.1142/S0218625X16300021

    Article  Google Scholar 

  90. Skakov, M., Kurbanbekov, S., and Scheffler, M. Key Eng. Mater., 2013, vols. 531–532, pp. 173–177.

    Google Scholar 

  91. Xue, W., Jin, Q., Liu, R., Jin, X., et al., Chin. J. Nonferrous Metal., 2013, vol. 23, no. 3, pp. 882–887.

    Google Scholar 

  92. Skakov, M.K. and Kurbanbekov, Sh.R., Vestn. Kazakh. Nats. Tekh. Univ., 2012, no. 4. http://vestnik.kazntu.kz/files/newspapers/51/1594/1594.pdf.

  93. Aliofkhazraei, M. and Sabour Rouhaghdam, A., Defect Diffus. Forum, 2009, vol. 293, pp. 83–90.

    Google Scholar 

  94. Shkurpelo, A.I., Belkin, P.N., and Pasinovskii, E.A., Fiz. Khim. Obrab. Mater., 1993, no. 2, pp. 116–125.

  95. Andrei, A., Lungu, C., Oncioiu, G., Diaconu, C., Plasma processing for improvements of structural materials properties, Proc. 35th European Physical Society Conf. on Plasma Physics, Hersonissos, 2008, p. 1.166. https://www.researchgate.net/publication/242312612_ Plasma_processing_for_improvements_of_structural_materials_properties.

  96. Belkin, P., Dyakov, I., Kusmanov, S., and Naumov, A., Composition and properties of structural steel surface after plasma electrolytic carburizing, Proc. Int. Conf. BALTRIB, Kaunas, 2011, pp. 184–188.

  97. Aliofkhazraei, M. and Sabour Rouhaghdam, A., Mater. Lett., 2008, vol. 62, pp. 2192–2195.https://doi.org/10.1016/j.matlet.2007.11.052

    Article  Google Scholar 

  98. Aliofkhazraee, M., Sabour Rouhaghdam, A., and Shahrabi, T., J. Alloys Compd., 2008, vol. 460, pp. 614–618.https://doi.org/10.1016/j.jallcom.2007.06.007

    Article  Google Scholar 

  99. Belkin, P.N., Borisov, A.M., and Kusmanov, S.A., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2016, vol. 10, no. 3, pp. 16–535 .https://doi.org/10.1134/S1027451016030058

    Article  Google Scholar 

  100. Komissarova, M.R., Dyakov, I.G., and Gladii, Yu.P., Mater. Sci. Forum, 2016, vol. 844, pp. 133–140.https://doi.org/10.4028/www.scientific.net/MSF.844.133

    Article  Google Scholar 

  101. Dushevskii, I.V. and Dobrya, V.I., Electrolytic-plasma cementation of electrolytic iron and its alloys, in Progressivnye sposoby vosstanovleniya detalei mashin i povysheniya ikh prochnosti (Advanced Methods for Recovery of Machine Parts and Their Strength Improvement), Chisinau: Shtiintsa, 1979, pp. 5–9.

  102. Weissgerber, H., Bohme, H., and Bohme, M. Die Technick, 1969, no. 6, pp. 413–417.

  103. Belkin, P.N. and Danilov, V.V., Vestn. Kostromsk. Gos. Univ., 2004, no. 2, pp. 8–15.

  104. Romanovskii, E.A., Belikhov, A.B., Belkin, P.N., Bespalova, O.V., et al., Materialy XXX Mezhdunarodnoi konferentsii po fizike vzaimodeistviya zaryazhennykh chastits s kristallami (Proc. XXX Int. Conf. on the Physics of Interaction of Charged Particles with Crystals), Moscow: Mosk. Gos. Univ., 2000, p. 101.

  105. Belkin, P.N., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2009, vol. 52, no. 2, pp. 65–69.

    Google Scholar 

  106. Belikhov, A.B. and Belkin, P.N. Elektron. Obrab. Mater., 1995, no. 2, pp. 74–76.

  107. Kusmanov, S.A., Belkin, P.N., D’yakov, I.G., Zhirov, A.V., et al., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 2, pp. 223–229.https://doi.org/10.1134/S2070205114020099

    Article  Google Scholar 

  108. D’yakov, I.G. and Kusmanov, S.A., in Trudy 6-i Vserossiiskoi s mezhdunarodnym uchastiem nauchno-tekhnicheskoi konferentsii “Bystro-zakalennye materialy i pokrytiya” (Proc. Sixth All-Russ. with Int. Participation Sci.-Pract. Conf. “Fast-Hardened Materials and Coatings”), Moscow: Mosk. Aviats. Tekhnol. Inst., 2007, pp. 300–303.

  109. Belkin, P.N., Zemskii, S.V., Pasinkovskii, E.A., and Faktorrovich, A.A., Elektron. Obrab. Mater., 1984, no. 1, pp. 42–43.

  110. Zemskii, S.V., Faktorrovich, A.A., Belkin, P.N., and Pasinkovskii, E.A., USSR Inventor’s Certificate no. 969761, Byull. Izobret., 1982, no. 40.

  111. Skakov, M.K. and Kurbanbekov, Sh.R. Tribologiya, 2012, no. 5, pp. 155–163.

  112. Mukaeva, V.R. and Parfenov, E.V., Vestn. Ufimsk. Gos. Aviats. Tekh. Univ., 2012, vol. 16, no. 6, pp. 67–73.

    Google Scholar 

  113. Gladii, Yu.P., Dyakov, I.G., and Komissarova, M.R., in Proc. 7th Int. Conference on Material Science and Condensed Matter Physics, Abstracts of Papers, Chisinau, 2014, vol. 292.

  114. Kusmanov, S.A., Zhirov, A.V., D’yakov, I.G., and Belkin, P.N., Uprochnyayushchie Tekhnol. Pokrytiya, 2011, no. 4, pp. 15–21.

  115. Kusmanov, S.A., Grishina, E.P., Belkin, P.N., Kusmanova, Yu.V., and Kudryakova, N.O., Met. Sci. Heat Treat., 2017, vol. 59, no. 4, pp. 1–7.

    Article  Google Scholar 

  116. Grishina, E.P., Zhirov, A.V., Belkin, P.N., and Dikusar, A.I., Surf. Eng. Appl. Electrochem., 2008, vol. 44, no. 5, pp. 390–395.https://doi.org/10.3103/S1068375508050098

    Article  Google Scholar 

  117. Aliev, M.Kh., Sabour, A., and Taheri, P., Prot. Met. Phys. Chem., 2008, vol. 44, no. 4, pp. 402–407.https://doi.org/10.1134/S0033173208040176

    Article  Google Scholar 

  118. Kusmanov, S.A., Dyakov, I.G., Belkin, P.N., Gracheva, L.A., et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2015, vol. 9, no. 1, pp. 98–104.https://doi.org/10.1134/S1027451015010139

    Article  Google Scholar 

  119. D’yakov, I.G. and Naumov, A.R., Elektron. Obrab. Mater., 2006, no. 6, pp. 4–9.

  120. Duradji, V.N., Mokrova, A.M., and Lavrova, T.S., Elektron. Obrab. Mater., 1984, no. 5, pp. 43–46.

  121. Belikhov, A.B. and Mikhailenko, M.A., Vestn. Kostromsk. Gos. Univ., 2004, no. 2, pp. 16–19.

  122. Alfereva, T.I., Belkin, P.N., and Zhirov, A.V., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2015, vol. 9, no. 2, pp. 313–316.https://doi.org/10.1134/S1027451015010243

    Article  Google Scholar 

  123. Eremina, A.S. and Slyvakova, K.S., Equipment for combined surface treatment of metal materials based on chemical-thermal hardening and electrolyte plasma and ultrasonic deformation, Proc. 1st Annual Russ. Natl. Conf. on Nanotechnologies, Nanomaterials, and Microsystems Technologies “Science for the Future,” Novosibirsk, 2016, pp. 92–94.

  124. Rakhimyanov, Kh.M., Rakhimyanov, K.Kh., Semenova, Yu.S., Eremina, A.S., et al., Trudy VII Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Innovatsii v mahsinostroenii” (Proc. VII Int. Sci.-Pract. Conf. “Innovations in Machine Engineering”), Kemerovo: Tekhmash, 2015, p. 142–147. https://elibrary.ru/item.asp?id=24164958.

  125. Rakhimyanov, Kh.M., Rakhimyanov, K.Kh., Eremina, A.S., and Al-Obaidi Luai Mohammed Radzhab, Vestn. Kuzbass. Gos. Tekh. Univ., 2018, no. 2, pp. 76–83.

  126. Wang, B., Xue, W., Jin, X., Zhang, Y., et al., Mater. Chem. Phys., 2019, vol. 221, pp. 232–238.https://doi.org/10.1016/j.matchemphys.2018.09.011

    Article  Google Scholar 

  127. Skakov, M.K., Kurbanbekov, Sh.R., and Zamanbekuly, E., KZ Patent 27171, 2013. http://kzpatents.com/3-ip27171-sposob-elektrolitno-plazmennojj-cementacii-detalejj-iz-nerzhaveyushhejj-stali.html.

  128. Vanin, V.S., Dopov. Akad. Nauk UkrSSR, 1960, no. 6, pp. 788–790.

  129. Inoue, K., US Patent 3 840 450, 1974.

  130. Inoue, K., JP Patent 969, 1970.

  131. Nippon, JP Patent 43-12972, 1968.

  132. Vodyanitskii, O.A., Zverev, A.A., Kurochkin, Yu.V., and Soldatenkov, S.I., RF Patent 2009214, 1994. http//www.freepatent.ru/patents/2009214.

Download references

Funding

This work was financially supported by the Russian Science Foundation (Contract no. 18-79-10094) for Kostroma State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Belkin.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkin, P.N., Kusmanov, S.A. Plasma Electrolytic Carburising of Metals and Alloys. Surf. Engin. Appl.Electrochem. 57, 19–50 (2021). https://doi.org/10.3103/S1068375521010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521010038

Keywords:

Navigation