Skip to main content
Log in

Formation of Diffusion Layers by Anode Plasma Electrolytic Nitrocarburizing of Low-Carbon Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The structure of the low-carbon steel after plasma electrolytic nitrocarburizing in the electrolyte containing acetonitrile was investigated. The cross-sectional microstructure, composition, and phase constituents of a modified layer under different processing conditions were characterized. It is shown that the electrolyte that contained ammonium chloride and acetonitrile provides the saturation of steel with nitrogen and carbon and the formation of the Fe4N and FeN0.05 nitrides, Fe4C carbide and other phases. The nitrogen diffusion decreases the austenitization temperature and results in the formation of martensite after the sample cooling in the electrolyte. The formation of a carbon and nitrogen source in a vapor-gas envelope (VGE) is investigated. The proposed mechanism includes evaporation of acetonitrile in the VGE, its adsorption on an anode with the following thermal decomposition, and also the acetonitrile reduction to amine with subsequent hydrolysis to ethanol that is determined with the use of chromatographic method. The aqueous solution that contained 10 wt.% NH4Cl and 10 wt.% CH3CN allows one to obtain the nitrocarburized layer with the thickness of 0.22 mm and microhardness up to 740 HV during 10 min at 850 °C. This treatment regime leads to the decrease in the surface roughness of steel R a from 1.01 μm to 0.17 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.S. Vanin and G.A. Semenova, Cyaniding of Steel by Heating in an Electrolyte, Met. Sci. Heat Treat., 1965, 7(10), p 670–672

    Article  Google Scholar 

  2. V.N. Duradzhy, A.M. Mokrova, and T.S. Lavrova, Carbon Distribution in Steel that Underwent Case Hardening in Electrolytic Plasma, Elektron. Obrab. Mater., 1984, 5, p 60–62

    Google Scholar 

  3. V.N. Duradzhy, I.V. Bryantsev, and A.K. Tovarkov, USSR Patent 618447, February 10, 1977

  4. H. Pang, G.-L. Zhang, X.Q. Wang, G.-H. Lv, H. Chen, and S.-Z. Yang, Mechanical Performances of Carbonitriding Films on Cast Iron by Plasma Electrolytic Carbonitriding, Chin. Phys. Lett., 2011, 28(11), p 118103. doi:10.1088/0256-307X/28/11/118103

    Article  Google Scholar 

  5. D.J. Shen, Y.L. Wang, P. Nash, and G.Z. Xing, A Novel Method of Surface Modification for Steel by Plasma Electrolysis Carbonitriding, Mater. Sci. Eng. A, 2007, 458, p 240–243. doi:10.1016/j.msea.2006.12.067

    Article  Google Scholar 

  6. Y.F. Jiang, Y.F. Bao, and K. Yang, Effect of C/N Concentration Fluctuation on Formation of Plasma Electrolytic Carbonitriding Coating on Q235, J. Iron Steel Res., 2012, 19(11), p 39–45. doi:10.1016/S1006-706X(13)60018-7

    Article  Google Scholar 

  7. J. Li, D. Shen, Y. Wang, and K. Liu, Research on the Formation Conditions of Plasma Electrolytic Carbonitriding in Liquid, China Surface Eng., 2005, 18(4), p 31–33.

  8. M.K. Zarchi, M.H. Shariat, S.A. Dehghan, and S. Solhjoo, Characterization of Nitrocarburized Surface Layer on AISI, 1020 Steel by Electrolytic Plasma Processing in an Urea Electrolyte, J. Mater. Res. Technol., 2013, 2(3), p 213–220. doi:10.1016/j.jmrt.2013.02.011

    Article  Google Scholar 

  9. Y.F. Jiang, T. Geng, Y.F. Bao, and Y. Zhu, Electrolyte–Electrode Interface and Surface Characterization of Plasma Electrolytic Nitrocarburizing, Surf. Coat. Technol., 2013, 216, p 232–236. doi:10.1016/j.surfcoat.2012.11.050

    Article  Google Scholar 

  10. P. Belkin, S. Kusmanov, A. Naumov, and Yu Parkaeva, Anodic Plasma Electrolytic Nitrocarburizing of Low-Carbon Steel, Adv. Mater. Res., 2013, 704, p 31–36. doi:10.4028/www.scientific.net/AMR.704.31

    Article  Google Scholar 

  11. P. Taheri, Ch Dehghanian, M. Aliofkhazraei, and A.S. Rouhaghdam, Nanocrystalline Structure Produced by Complex Surface Treatments: Plasma Electrolytic Nitrocarburizing, Boronitriding, Borocarburizing, and Borocarbonitriding, Plasma Process. Polym., 2007, 4, p S721–S727. doi:10.1002/ppap.200731805

    Article  Google Scholar 

  12. H. Tavakoli, S.M. Mousavi Khoie, S.P.H. Marashi, and O. Bolhasani, Effect of Electrolyte Composition on Characteristics of Plasma Electrolysis Nitrocarburizing, J. Mater. Eng. Perform., 2013, 22(8), p 2351–2358. doi:10.1007/s11665-013-0505-3

    Google Scholar 

  13. A.R. Rastkar and B. Shokri, Surface modification and Wear Test of Carbon Steel by Plasma Electrolytic Nitrocarburizing, Surf. Interface Anal., 2012, 44, p 342–351. doi:10.1002/sia.3808

    Article  Google Scholar 

  14. P. Belkin, I. Dyakov, T. Mukhacheva, B. Krit, and V. Vostrikov, Anode Saturation with Nitrogen and Carbon in Aqueous Solution of Carbamide-Bearing Electrolytes, Met. Sci. Heat Treat., 2010, 52(1–2), p 20–24. doi:10.1007/s11041-010-9224-7

    Article  Google Scholar 

  15. X. Nie, C. Tsotsos, A. Wilson, A.L. Yerokhin, A. Leyland, and A. Matthews, Characteristics of a Plasma Electrolytic Nitrocarburising Treatment for Stainless Steels, Surf. Coat. Technol., 2001, 139, p 135–142. doi:10.1016/S0257-8972(01)01025-8

    Article  Google Scholar 

  16. M. Aliofkhazraei, P. Taheri, A.S. Rouhaghdam, and Ch Dehghanian, Systematic Study of Nanocrystalline Plasma Electrolytic Nitrocarburising of 316L Austenitic Stainless Steel for Corrosion Protection, J. Mater. Sci. Technol., 2007, 23(5), p 665–671

    Google Scholar 

  17. N.A. Kazerooniy, M.E. Bahrololoom, M.H. Shariat, F. Mahzoon, and T. Jozaghi, Effect of Ringer’s Solution on Wear and Friction of Stainless Steel 316L after Plasma Electrolytic Nitrocarburising at Low Voltages, J. Mater. Sci. Technol., 2011, 27(10), p 906–912

    Article  Google Scholar 

  18. A.L. Yerokhin, A. Leyland, C. Tsotsos, A.D. Wilson, X. Nie, and A. Matthews, Duplex Surface Treatments Combining Plasma Electrolytic Nitrocarburising and Plasma-Immersion Ion-Assisted Deposition, Surf. Coat. Technol., 2001, 142–144, p 1129–1136. doi:10.1016/S0257-8972(01)01097-0

    Article  Google Scholar 

  19. L.C. Kumruoglu and A. Ozel, Plasma Electrolytic Saturation of 316 L Stainless Steel in an Aqueous Electrolyte Containing Urea and Ammonium Nitrate, Mater. Technol., 2013, 47(3), p 307–310

    Google Scholar 

  20. S.A. Kusmanov, SYu Shadrin, and P.N. Belkin, Carbon Transfer from Aqueous Electrolytes to Steel by Anode Plasma Electrolytic Carburizing, Surf. Coat. Technol., 2014, 258, p 727–733. doi:10.1016/j.surfcoat.2014.08.005

    Article  Google Scholar 

  21. P.N. Belkin, Anode Electrochemical Thermal Modification of Metals and Alloys, Surf. Eng. Appl. Electrochem., 2010, 46(6), p 558–569. doi:10.3103/S1068375510060049

    Article  Google Scholar 

  22. S.A. Kusmanov, A.A. Smirnov, Yu.V. Kusmanova, and P.N. Belkin, Anode Plasma Electrolytic Nitrohardening of Medium Carbon Steel, Surf. Coat. Technol., 2014, doi:10.1016/j.surfcoat.2014.12.033

    Google Scholar 

  23. S.A. Kusmanov, P.N. Belkin, I.G. D’yakov, A.V. Zhirov, T.L. Mukhacheva, and A.R. Naumov, Influence of Oxide Layer on Carbon Diffusion During Anode Plasma Electrolytic Carburizing, Prot. Met. Phys. Chem. Surf., 2014, 50(2), p 223–229. doi:10.1134/S2070205114020099

    Article  Google Scholar 

  24. P.N. Belkin, I.G. Dyakov, A.V. Zhirov, S.A. Kusmanov, and T.L. Mukhacheva, Effect of Compositions of Active Electrolytes on Properties of Anodic Carburization, Prot. Met. Phys. Chem. Surf., 2010, 46(6), p 715–720. doi:10.1134/S2070205110060158

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the research program of the Ministry of Education and Science of the Russian Federation (Contract No. 855). This research was also financially supported by the Russian Science Foundation (Contract No. 15-13-10018) to the Nekrasov Kostroma State University. X-ray diffraction and electron microscopic studies were performed in the Collective Use Centre “Diagnosis of micro and nanostructures” with the financial support of the Ministry of Education and Science of the Russian Federation (Contract No. 02.552.11.7068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kusmanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusmanov, S.A., Kusmanova, Y.V., Naumov, A.R. et al. Formation of Diffusion Layers by Anode Plasma Electrolytic Nitrocarburizing of Low-Carbon Steel. J. of Materi Eng and Perform 24, 3187–3193 (2015). https://doi.org/10.1007/s11665-015-1578-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1578-y

Keywords

Navigation