Skip to main content
Log in

Rapid Surface Hardening of Stainless Steel by Plasma Electrolytic Carburizing

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Plasma electrolytic saturation has become an important method to fabricate the modified layer on steel surface, by which a high hardness and good properties on steel surface can be obtained in several minutes. Especially, plasma electrolytic carburizing (PEC) can combine surface hardening of steel and fast cooling in the same electrolyte without reheating. In the present investigation, PEC behaviors of 17-4PH martensitic precipitation stainless steel were systematically studied with different process parameters. The microstructure of the carburized layer was characterized by optical microscope, scanning electron microscope, x-ray diffractometer and x-ray photoelectron spectrometer. The hardnesses of the carburized layers were tested by Vickers hardness tester and nano indenter. The mechanical properties of the carburized layer were evaluated based on load-displacement curves of nanoindentation tests. The results show that 17-4PH stainless steel can be rapid hardened by plasma electrolytic carburizing with the thickness of 20 μm in 15 min. Hardness of the stainless steel can be increased from 360 to 634 HV0.1. The reasons for the hardness and mechanical property improvement of 17-4PH stainless steel after plasma electrolytic carburizing were analyzed based on microstructural characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.L. Liu, F.Y. Yan, and M.F. Yan, Surface Grain Nanocrystallization of Fe-Cr-Ni Alloy Steel by Plasma Thermochemical Treatment, Surf. Coat. Technol., 2019, 370, p 136–143.

    Article  CAS  Google Scholar 

  2. D. Guo, J. Chen, V.A.M. Cristino et al., Friction Surfacing of Precipitation Hardening Stainless Steel Coatings for Cavitation Erosion Resistance, Surf. Coat. Technol., 2022, 434, p 128206.

    Article  CAS  Google Scholar 

  3. M.R. Stoudt, C.E. Campbell, and R.E. Ricker, Examining the Relationship Between Post-Build Microstructure and the Corrosion Resistance of Additively Manufactured 17-4PH Stainless Steel, Materialia., 2022, 22, p 101435.

    Article  CAS  Google Scholar 

  4. C. Suwanpreecha and A. Manonukul, A Review on Material Extrusion Additive Manufacturing of Metal and How it Compares with Metal Injection Moulding, Metals., 2022, 12, p 12030429.

    Article  Google Scholar 

  5. M.X. Liu, W.K. Zhang, G.R. Chang et al., Shot-Peened Surface Residual Stress Relaxation and Fatigue Resistance of 17-4PH Steel at Elevated Temperature, Rare. Metal. Mater. Eng., 2021, 50, p 1549–1555.

    CAS  Google Scholar 

  6. M. Walczak and M. Szala, Effect of Shot Peening on the Surface Properties, Corrosion and Wear Performance of 17-4PH Steel Produced by DMLS Additive Manufacturing, Arch. Civil Mech. Eng., 2021, 4, p 1–20.

    Google Scholar 

  7. Y.X. Li, Y.X. Yang, J.H. Nie et al., Hot Corrosion Behavior of a NiCoCrAlY Coating Fabricated by Laser Cladding on 17-4PH Stainless Steel, Eng. Fail. Anal., 2022, 133, p 105962.

    Article  CAS  Google Scholar 

  8. R. He, M.P. Wu, C. Cui et al., Effects of Laser Energy Density on Microstructure and Corrosion Resistance of FeCrNiMnAl High Entropy Alloy Coating, Opt. Laser. Technol., 2022, 152, p 108188.

    Article  Google Scholar 

  9. Y. Li, Y.Y. He, J.J. Xiu et al., Wear and Corrosion Properties of AISI 420 Martensitic Stainless Steel Treated by Active Screen Plasma Nitriding, Surf. Coat. Technol., 2017, 329, p 184–192.

    Article  CAS  Google Scholar 

  10. K.R.M. Rao, C. Nouveau, and K. Trinadh, Low-Temperature Plasma Nitriding of Martensitic Stainless Steel, Trans. Indian Inst. Met., 2020, 73(6), p 1695–1699.

    Article  CAS  Google Scholar 

  11. A. Kvryan, C.M. Efaw, K.A. Higginbotham et al., Corrosion Initiation and Propagation on Carburized Martensitic Stainless Steel Surfaces Studied via Advanced Scanning Probe Microscopy, Materials, 2019, 12(6), p 940–960.

    Article  CAS  Google Scholar 

  12. C.J. Scheuer, R.P. Cardoso, M. Mafra et al., Effects of the Voltage and Pressure on the Carburizing of Martensitic Stainless Steel in Pulsed Dc Glow Discharge, Mat. Res., 2021, 24(6), p 20210154.

    Article  Google Scholar 

  13. R.L. Liu, Y.J. Qiao, M.F. Yan et al., Effects of Rare Earth Elements on the Characteristics of Low Temperature Plasma Nitrocarburized Martensitic Stainless Steel, J. Mater. Sci. Technol., 2012, 28(11), p 1046–1052.

    Article  CAS  Google Scholar 

  14. R.L. Liu, Y.J. Qiao, M.F. Yan et al., Layer Growth Kinetics and Wear Resistance of Martensitic Precipitation Hardening Stainless Steel Plasma Nitrocarburized at 460 °C with Rare Earth Addition, Met. Mater. Int., 2013, 19, p 1151–1157.

    Article  CAS  Google Scholar 

  15. Y. You, J. Yan, and M.F. Yan, Atomistic Diffusion Mechanism of Rare Earth Carburizing/Nitriding on Iron-Based Alloy, Appl. Surf. Sci., 2019, 484(10), p 710–715.

    Article  CAS  Google Scholar 

  16. Y. Yang, X.Z. Dai, X.R. Yang et al., First-Principles Analysis on the Role of Rare-Earth Doping in Affecting Nitrogen Adsorption and Diffusion at Fe Surface Towards Clarified Catalytic Diffusion Mechanism In Nitriding, Acta Mater., 2020, 196, p 347–354.

    Article  CAS  Google Scholar 

  17. Y. Sun and T. Bell, Low Temperature Plasma Nitriding Characteristics of Precipitation Hardening Stainless Steel, Surf. Eng., 2003, 19, p 331–336.

    Article  CAS  Google Scholar 

  18. C.J. Scheuer, F.A.A. Possoli, P.C. Borges et al., AISI 420 Martensitic Stainless Steel Corrosion Resistance Enhancement by Low-Temperature Plasma Carburizing, Electrochim. Acta., 2019, 317, p 70–82.

    Article  CAS  Google Scholar 

  19. S.J. Gobbi, V.J. Gobbi, and G. Reinke, Improvement of Mechanical Properties and Corrosion Resistance of 316L and 304 Stainless Steel by Low Temperature Plasma Cementation, Matéria Rio de Janeiro., 2020, 25(2), p 12636.

    Article  Google Scholar 

  20. R.L. Liu, F.Y. Yan, C.Y. Wei et al., Characteristics of Carbon-Expanded α Phase Layer on AISI 431 Stainless Steel using Experimental and Fist-Principles Calculation Methods, Surf. Coat. Technol., 2019, 375, p 66–73.

    Article  CAS  Google Scholar 

  21. A.L. Yerokhin, X. Nie, A. Leyland et al., Plasma Electrolysis for Surface Engineering, Surf. Coat. Technol., 1999, 122, p 73–93.

    Article  CAS  Google Scholar 

  22. P.N. Belkin and S.A. Kusmanov, Plasma Electrolytic Carburising of Metals and Alloys, Surf. Eng. Appl. Electrochem., 2021, 57(1), p 19–50.

    Article  Google Scholar 

  23. T.L. Mukhacheva, P.N. Belkin, and S.V. Burov, Increasing Wear Resistance of Austenitic Stainless Steel by Anodic Plasma Electrolytic Nitrocarburizing, J. Phys. Conf. Ser., 2020, 1713, p 012031.

    Article  Google Scholar 

  24. R.L. Liu, T.Y. Song, C.X. Bian et al., Research Progress of Plasma Electrolytic Saturation Technology and its Application in Surface Modification of Stainless Steel, Trans. Mater. Heat Treat., 2020, 41, p 1–15.

    Google Scholar 

  25. S. Kusmanov, S.A. Silkin, and P.N. Belkin, The Effect of Plasma Electrolytic Polishing on the Surface Properties of Nitrocarburised Steel, J. Phys. Conf. Ser., 2020, 1713, p 012023.

    Article  Google Scholar 

  26. S. Kusmanov, S.S. Korableva, S.A. Silkin et al., Increasing Hardness and Corrosion Resistance of Medium-Carbon Steel Surface by Cathodic Plasma Electrolytic Nitriding, Elektron. Obrab. Mater., 2021, 57, p 27–33.

    CAS  Google Scholar 

  27. J. Wu, B. Wang, Y.F. Zhang et al., Enhanced Wear and Corrosion Resistance of Plasma Electrolytic Carburized Layer on T8 Carbon Steel, Mater. Chem. Phys., 2016, 171, p 50–56.

    Article  CAS  Google Scholar 

  28. B. Wang, W.B. Xue, X.Y. Jin et al., Combined Treatment Plasma Electrolytic Carburizing and Borocarburizing on Q235 Low-Carbon Steel, Mater. Chem. Phys., 2019, 221, p 232–238.

    Article  CAS  Google Scholar 

  29. J. Wu, L. Dong, J. Deng et al., Direct Growth of Oxide Layer on Carbon Steel by Cathodic Plasma Electrolysis, Surf. Coat. Technol., 2018, 338, p 63–68.

    Article  CAS  Google Scholar 

  30. Y. Yang, X. Zhou, X.Z. Dai et al., Comparative Study of Plasma Nitriding and Plasma Oxynitriding for Optimal Wear and Corrosion Resistance: Influences of Gas Composition, J. Mater. Res. Technol., 2021, 15, p 448–459.

    Article  CAS  Google Scholar 

  31. M. Yan, Y. Sun, T. Bell et al., Effect of Temperature and Phase Constitution on Kinetics of La Diffusion, J. Rare Earths., 2002, 20(4), p 329–332.

    Google Scholar 

  32. N.M. Lin, R.Z. Xie, P. Zhou et al., Review on Improving Wear and Corrosion Resistance of Steels via Plasma Electrolytic Saturation Technology, Surf. Rev. Lett, 2016, 23(4), p 1630002.

    Article  CAS  Google Scholar 

  33. L. Ma, Y. Gao, J. Yan et al., Effect of Pre-Oxidization on the Cyclic Coking and Carburizing Resistance of HP40 Alloy: with and Without Yttrium Modification, Corros. Sci., 2013, 75(10), p 193–200.

    Article  CAS  Google Scholar 

  34. X.G. Feng, H. Zhou, Y.G. Zheng et al., Structural, Mechanical And Tribological Behavior of Different DLC Films Deposited on Plasma Nitrided CF170 Steel, Diam. Relat. Mater., 2021, 116, p 108400.

    Article  Google Scholar 

  35. Y.W. Peng, J. Gong, T.L. Christiansen et al., Surface Modification of CoCrFeNi High Entropy Alloy by Low-Temperature Gaseous Carburization, Mater. Lett., 2020, 283, p 128896.

    Article  Google Scholar 

  36. F. Gao, X.M. Zong, L. Tian et al., Microstructure and Mechanical Properties of Low Temperature Carburizing Layer on AISI 440C Martensitic Stainless Steel, Mater. Express, 2020, 10(6), p 841–847.

    Article  CAS  Google Scholar 

  37. C.J. Scheuer, R.P. Cardoso, R. Pereira et al., Low Temperature Plasma Carburizing of Martensitic Stainless Steel, Mater. Sci. Eng. A., 2012, 539, p 369–372.

    Article  CAS  Google Scholar 

  38. C.J. Scheuer, R.P. Cardoso, M. Mafra et al., AISI 420 Martensitic Stainless Steel Low-Temperature Plasma Assisted Carburizing Kinetics, Surf. Coat. Technol., 2013, 214(2), p 30–37.

    Article  CAS  Google Scholar 

  39. S.F. Brunattoa, C.J. Scheuer, I. Boromeic et al., Martensite Coarsening in Low-Temperature Plasma Carburizing, Surf. Coat. Technol., 2018, 350, p 161–171.

    Article  Google Scholar 

  40. R.L. Liu and M.F. Yan, Characteristics of AISI 420 Stainless Steel Modified By Low-Temperature Plasma Carburizing with Gaseous Acetone, Coatings, 2019, 9(2), p 75.

    Article  Google Scholar 

  41. C.J. Scheuer, R.P. Cardoso, F.I. Zanetti et al., Low-Temperature Plasma Carburizing of AISI 420 Martensitic Stainless Steel: Influence of Gas Mixture and Gas Flow Rate, Surf. Coat. Technol., 2012, 206(24), p 5085–5090.

    Article  CAS  Google Scholar 

  42. C.X. Li and T. Bell, Corrosion Properties of Plasma Nitrided AISI 410 Martensitic Stainless Steel in 3.5% NaCl and 1% HCl Aqueous Solutions, Corr. Sci., 2006, 48(8), p 2036–2049.

    Article  CAS  Google Scholar 

  43. J. Hu, C. Ma, X. Yang et al., Microstructure Evolution During Continuous Cooling in AISI 5140 Steel Processed by Induction Heating Chromizing, J. Mater. Eng. Perform., 2017, 26, p 5530–5537.

    Article  CAS  Google Scholar 

  44. T. Yamashita and P. Hayes, Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials, Appl. Surf. Sci., 2008, 254(8), p 2441–2449.

    Article  CAS  Google Scholar 

  45. M.C. Biesinger, B.P. Paynec, A.P. Grosvenor et al., Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 2011, 257, p 2717–2730.

    Article  CAS  Google Scholar 

  46. B. Lynch, Z.C. Wang, L. Ma et al., Passivation-Induced Cr and Mo Enrichments of 316L Stainless Steel Surfaces and Effects of Controlled Pre-Oxidation, J. Electrochem. Soc., 2020, 167, p 141509.

    Article  CAS  Google Scholar 

  47. T.R. Gengenbach, G.H. Major, M.R. Linford et al., Practical Guides for x-ray Photoelectron Spectroscopy (XPS): Interpreting the Carbon 1s Spectrum, J. Vac. Sci. Technol. A., 2021, 39, p m013204.

    Article  Google Scholar 

  48. B. Lynch, F. Wiame, V. Maurice et al., XPS Study of Oxide Nucleation and Growth Mechanisms on a Model FeCrNiMo Stainless Steel Surface, Appl. Surf. Sci., 2022, 575, p 151681.

    Article  CAS  Google Scholar 

  49. M.C. Biesinger, L.W.M. Laua, and A.R. Gerson, Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci., 2010, 257, p 887–898.

    Article  CAS  Google Scholar 

  50. A.C. Rovani, R. Breganon, G.D. Souza et al., Scratch Resistance of Low-Temperature Plasma Nitrided and Carburized Martensitic Stainless Steel, Wear, 2017, 376–377, p 70–76.

    Article  Google Scholar 

  51. Y. Bell, T. Dong, and H. Sun, Realising the Potential of Duplex Surface Engineering, Tribol. Int., 1998, 31, p 127–137.

    Article  CAS  Google Scholar 

  52. F. Mahboubi and K. Abdolvahabi, The Effect of Temperature on Plasma Nitriding Behaviour of DIN 1.6959 Low Alloy Steel, Vacuum, 2006, 81, p 239–243.

    Article  CAS  Google Scholar 

  53. D. Xi, Y.T. Liu, and D.X. Han, Improvement of Mechanical Properties of Martensitic Stainless Steel by Plasma Nitriding at Low Temperature, Acta Metall. Sin., 2008, 21, p 21–29.

    Article  CAS  Google Scholar 

  54. T.Y. Song, R.L. Liu, L.Z. Li et al., DFT Investigation of Carbon-Expanded α Phase with Different Alloying Element, Vacuum, 2022, 202, p 111199.

    Article  CAS  Google Scholar 

  55. J. Malzbender and G.D. With, Energy Dissipation, Fracture Toughness and the Indentation Load-Displacement Curve of Coated Materials, Surf. Coat. Technol., 2000, 135(1), p 60–68.

    Article  CAS  Google Scholar 

  56. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3–20.

    Article  CAS  Google Scholar 

  57. G. Pintaude, Introduction of the Ratio of the Hardness to the Reduced Elastic Modulus for Abrasion (Chapter 7), Tribology-Fund. Adv, IntechOpen, 2013.

    Google Scholar 

  58. B.R. Lawn, T. Jensen, A. Arora et al., Brittleness as an Indentation Size Effect, J. Mater. Sci., 1976, 11, p 573–575.

    Article  Google Scholar 

  59. M.L. Oyen and R.F. Cook, A Practical Guide for Analysis of Nanoindentation Data, J. Mech Behav. Biomed. Mater., 2009, 2(4), p 396–407.

    Article  Google Scholar 

  60. A. Leyland and A.J.W. Matthews, On the Significance of the H/E Ratio in Wear Control: a Nanocomposite Coating Approach to Optimised trIbological Behaviour, Wear, 2000, 246, p 1–11.

    Article  CAS  Google Scholar 

  61. S.F. Brunatto and C.M. Lepienski, Nanoindentation Applied to DC Plasma Nitrided Parts, Appl. Nano. Adv. Mater., 2017, 7, p 157–182.

    Google Scholar 

  62. L.A. Espitia, H.S. Dong, X.Y. Li et al., Cavitation Erosion Resistance and Wear Mechanisms of Active Screen Low Temperature Plasma Nitrided AISI 410 Martensitic Stainless Steel, Wear, 2015, 332, p 1070–1079.

    Article  Google Scholar 

  63. D.S. Rong, Y. Jiang, and J.M. Gong, Residual Stress in Low Temperature Carburized Layer of Austenitic Stainless Steel, Mater. Sci. Technol., 2017, 3, p 277–284.

    Article  Google Scholar 

  64. F.S. Severoa, C.J. Scheuerb and R.P. Cardoso, Cavitation Erosion Resistance Enhancement of Martensitic Stainless Steel via Low-Temperature Plasma Carburizing, Wear, 2019, 428–429, p 162–166.

    Article  Google Scholar 

  65. Y.Y. Lu, D. Li, H. Ma et al., Enhanced Plasma Nitriding Efficiency and Properties by Severe Plastic Deformation Pretreatment for 316L Austenitic Stainless Steel, J. Mater. Res. Technol., 2021, 15, p 1742–1746.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Heilongjiang Provincial Natural Science Foundation of China (No. LH2019E029), National Natural Science Foundation of China (No. 51871071) for the financial support of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, T.Y., Liu, R.L., Fang, Y.L. et al. Rapid Surface Hardening of Stainless Steel by Plasma Electrolytic Carburizing. J. of Materi Eng and Perform 32, 8880–8891 (2023). https://doi.org/10.1007/s11665-022-07754-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07754-9

Keywords

Navigation