Skip to main content
Log in

Thermoelectric Properties and Surface States in the Layers of Bi2Te3 Topological Insulators

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2018

This article has been updated

Abstract

The thermoelectric properties and Shubnikov–de Haas (SdH) oscillations of monocrystalline layers of a topological insulator (ТI) of n-type bismuth telluride were investigated. The monocrystalline Bi2Te3 layers were fabricated by the mechanical exfoliations of layers from a monocrystalline ingot of the appropriate composition. The cyclotron effective masses, the Dingle temperature, and the quantum mobilities of charge carriers were calculated from the experimental data by SdH oscillations both in longitudinal (HI) and in perpendicular (HI) magnetic fields at temperatures in the range of 2.1–4.2 K. It was found that the phase shift of the Landau levels index is 0.5 both for the parallel and for the perpendicular magnetic fields associated with the Berry phase of surface states. The power factor in the temperature range of 2–300 K was calculated from the temperature dependences of resistance and thermal e.m.f. It was stated that the power factor α2σ has a maximum value in the temperature range of 100–250 K, which corresponds to the maximum values for perfect monocrystals described in the literature. Taking into account that the heat conductivity in the thin layers is essentially lower than in the bulk samples, it is reasonable to expect a considerable increase in the thermoelectric efficiency over a wide temperature range, which is of great importance for the development of new highly effective thermoelectric materials based on thinner Bi2Te3 ТI layers for practical applications in thermogenerators and coolers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 11 October 2018

    The list of authors should read as follows: A. A. Nikolaeva<Superscript><Emphasis Type="Italic">a</Emphasis>, <Emphasis Type="Italic">b</Emphasis>, *</Superscript>, L. A. Konopko<Superscript><Emphasis Type="Italic">a</Emphasis>, <Emphasis Type="Italic">b</Emphasis></Superscript>, K. Rogackii<Superscript><Emphasis Type="Italic">b</Emphasis></Superscript>, P. P. Bodiul<Superscript><Emphasis Type="Italic">a</Emphasis>, <Emphasis Type="Italic">c</Emphasis></Superscript>, and I. Gherghishan<Superscript><Emphasis Type="Italic">a</Emphasis></Superscript>

References

  1. Ioffe, L.F., Poluprovodnikovye termoelementy (Semiconductor Thermoelements), Moscow: Akad. Nauk SSSR, 1960.

    Google Scholar 

  2. Tritt, T.M., Annu. Rev. Mater. Res., 2011, vol. 41, pp. 433–448.

    Article  Google Scholar 

  3. Goldsmid, H.J., Thermoelectric Refrigeration, New York: Plenum, 1964.

    Book  Google Scholar 

  4. Rowe, D.M., CRC Handbook of Thermoelectrics, Boca Raton, Fl: CRC Press, 1995.

    Book  Google Scholar 

  5. Behnia, K., Fundamentals of Thermoelectricity, Oxford: Oxford Univ. Press, 2015. http://ukcatalogue.oup.com/product/9780199697663.do.

    Book  Google Scholar 

  6. Mishra, S.K., Satpathy, S. and Jepsen, O., JPCM, 1997, vol. 9, no. 2, p.461.

    Google Scholar 

  7. Kadel, K., Kumari, L., Li, W.Z., Huang J., et al., Nanoscale Res. Lett., 2011, vol. 6, no. 57, pp. 1–7.

    Google Scholar 

  8. Silva, L.W., Kaviany, M. and Uher, C., J. Appl. Phys., 2005, vol. 97, p. 114903.

    Article  Google Scholar 

  9. Ovsyannikov, S.V., Shchennikov, V.V., Vorontsov, G.V., Manakov, A.Y., et al., J. Appl. Phys., 2008, vol. 104, no. 5, art. ID 053713.

    Google Scholar 

  10. Meng, J.F., Shekar, N.V., Badding, J.V., Chung, D.Y., et al., J. Appl. Phys., 2001, vol. 90, no. 6, p. 2836.

    Article  Google Scholar 

  11. Fu, L. and Kane, C.L., Phys. Rev. B, 2007, vol. 76, art. ID 045302.

  12. Hasan, M.Z. and Kane, C.L., Rev. Mod. Phys., 2010, vol. 82, no. 4, pp. 3045–3067.

    Article  Google Scholar 

  13. Qu, D.-X., Hor, Y.S., Xiong, J., Cava, R.J., et al., Science, 2010, vol. 329, no. 5993, p.821.

    Article  Google Scholar 

  14. Taskin, A., Ren, Z., Sasaki, S., Segawa, K., et al., Phys. Rev. Lett., 2011, vol. 107, art. ID 016801.

  15. Takahashi, R. and Murakami, S., Semicond. Sci. Technol., 2012, vol. 27, no. 12, p. 124005.

    Article  Google Scholar 

  16. Hicks, L.D. and Dresselhaus, M.S., Phys. Rev. B, 1993, vol. 47, no. 19, p. 12727.

    Article  Google Scholar 

  17. Dresselhaus, M.S., Dresselhaus, G., Sun, X., Zhang, Z., et al., Phys. Solid State, 1999, vol. 41, no. 5, pp. 679–682.

    Article  Google Scholar 

  18. Heremans, J.P., Thrush, C.M., and Morelh, D.T., Phys. Rev. B, 2004, vol. 70, p. 115334.

    Article  Google Scholar 

  19. Hicks, L.D., Harman, T.C., and Dresselhaus, M.S., Appl. Phys. Lett., 1993, vol. 63, no. 23, p. 3230.

    Article  Google Scholar 

  20. Venkatasubramanian, R., Siivola, E., Colpitts, T., et al., Nature, 2001, vol. 413, pp. 597–602.

    Article  Google Scholar 

  21. Goyal, V., Teweldebrhan, D. and Balandin, A.A., Appl. Phys. Lett., 2010, vol. 97, p. 133117.

    Article  Google Scholar 

  22. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., et al., Science, 2004, vol. 306, no. 5696, pp. 666–669.

    Article  Google Scholar 

  23. Konopko, L.A., Nikolaeva, A.A., and Khuber, T.E., Nanosyst., Nanomater., Nanotechnol., 2011, vol. 9, no. 1, pp. 67–75.

    Google Scholar 

  24. Brandt, N.B. and Chudinov, S.M., Eksperimental’nye metody issledovaniya energeticheskikh spektrov elektronov i fonov v metallakh (Analysis of Energy Spectra of Electrons and Photons in Metals), Moscow: Mosk. Gos. Univ., 1983.

    Google Scholar 

  25. Seeger, K., Semiconductor Physics: An Introduction, 2004, 9th ed.

    Book  MATH  Google Scholar 

  26. He, L., Xiu, F., Yu, X., Teague, M., et al., Nano Lett., 2012, vol. 12, pp. 1486–1490.

    Article  Google Scholar 

  27. Luk’yanova, L.N., Boikov, Yu.A., Danilov, V.A., Usov, O.A., Volkov, M.P., and Kutasov, V.A., Phys. Solid State, 2014, vol. 56, no. 5, pp. 941–947.

    Article  Google Scholar 

  28. Schoenberg, D., Magnetic Oscillations in Metals, Cambridge: Cambridge Univ. Press, 2009.

    Google Scholar 

  29. Rischau, C.W., Leridon, B., Fauqué, B., Metayer, V., and van der Beek, C.J., Phys. Rev. B, 2013, vol. 88, no. 20, art. ID 205207.

    Google Scholar 

  30. Ren, Z., Taskin, A.A., Sasaki, S., Segawa, K., et al., Phys. Rev. B, 2010, vol. 82, art. ID 241306.

  31. Boikov, Yu.A., Gribanova, O.S., Danilov, V.A., and Kutasov, V.A., Fiz. Tverd. Tela, 1991, vol. 11, p. 3414.

    Google Scholar 

  32. Konopko, L.A., Nikolaeva, A.A., Huber, T.E. and Meglei, D.F., Phys. Status Solidi C, 2014, vol. 11, pp. 1377–1381.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nikolaeva.

Additional information

Original Russian Text © A.A. Nikolaeva, L.A. Konopko, K. Rogatskii, P.P. Bodyul, I. Gergishan, 2018, published in Elektronnaya Obrabotka Materialov, 2017, No. 5, pp. 67–72.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaeva, A.A., Konopko, L.A., Rogatskii, K. et al. Thermoelectric Properties and Surface States in the Layers of Bi2Te3 Topological Insulators. Surf. Engin. Appl.Electrochem. 54, 273–278 (2018). https://doi.org/10.3103/S1068375518030092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375518030092

Keywords

Navigation