Skip to main content
Log in

On the stability of defects in the structure of electrochemical coatings

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The conditions of metal hydride formation are studied during the cathodic reduction of metals through the parallel reactions of the Men+ and H+ cations. It is established that this interaction is possible not only through the introduction and localization of a hydrogen atom in the metal structure (e.g., in interstices). The hydrides can also be formed in areas of metal structure defects. The energy of hydrogen-metal interaction in metallurgy is shown to be different from that which takes place in electroplating. Thus, we have observed certain mechanisms of hydrogen interaction with electrolytic metals and alloys. We have shown the exceptional role of structural defects in causing the formation of metal-hydrogen bonds. It is found that stable defects can be applied for the accumulation of hydrogen in the form of hydrides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McKay, K., Hydrogen Compounds of Metals, Springer, 1966.

    Google Scholar 

  2. Galaktionova, N.A., Vodorod v metallakh (Hydrogen in Metals), Moscow: Metallurgiya, 1967.

    Google Scholar 

  3. Gel’d, P.V., Ryabov, R.A., and Mokhracheva, L.P., Vodorod i fizicheskie svoistva metallov i splavov. Gidridy perekhodnykh metallov (Hydrogen and Physical Property of Metals and Alloys. Hydrides of Transition Metals), Moscow: Nauka, 1985.

    Google Scholar 

  4. Oudriss, A., Creus, J., Bouhattate, J., Conforto, E., Berziou, C., Savall, C., and Feugas, X., Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Materialia, 2012, no. 60, pp. 6814–6828.

    Google Scholar 

  5. Sudzuki, K, Fudzimori, X., and Khasimoto, K., Amorfnye metally (Amorphous Metals), Moscow: Metallurgiya, 1987.

    Google Scholar 

  6. Alefeld, G. and Volkl, J., Hydrogen in Metals I: Basic Properties, Springer Berlin Heidelberg, 2014.

    Google Scholar 

  7. Alefeld, G. and Volkl, J., Hydrogen in Metals II, Springerlink, 2012.

    Google Scholar 

  8. Fromm, E. and Uhcida, H., Surface phenomena in hydrogen absorption kinetics of metals and intermetallic compounds, J. Less-Common Metals, 1987, no. 131, pp. 1–12.

    Google Scholar 

  9. Chene, I., Contribution of cathodic charging to hydrogen storage in metal hydrides, J. Less-Common Metals, 1987, no. 131, pp. 337–347.

    Google Scholar 

  10. Libowitz, G.G. and Maeland, A.J., Hydride formation by BCC solid solution alloys, Mater. Sci. Forum, 1988, vol. 31, pp. 176–196.

    Article  Google Scholar 

  11. Pick, M.A., Green, V.G., and Strongin, M., Uptake rates for hydrogen by niobium and tantalum: Effect of thin metallic overlayers, J. Less-Common Metals, 1980, no. 73, pp. 89–95.

    Google Scholar 

  12. Pick, M.A., Davenpor, J.W., Strongin, M., and Dienes, G.J., Enhancement of hydrogen uptake rate for Nb and Ta by thin surface overlayers, Phys. Rev. Lett., 1979, vol. 43, no. 4, pp. 286–289.

    Article  Google Scholar 

  13. Osnovy vodorodnoi energetiki (Fundamentals of Hydrogen Energetics), Moshnikova, V.A. and Terukova, E.I., Eds., St. Petersburg: SPb Gos. Tekh. Univ., Len. Ekonom. Tekh. Inst., 2011.

    Google Scholar 

  14. Poltoratskii, L.M., Gromov, V.E., and Chinokalov, V.Ya., Vodorod v stalyakh i splavakh (Hydrogen in Steels and Alloys), Novokuznetsk: Sib. Gos. Industr. Univ., 2008.

    Google Scholar 

  15. Kuznetsov, V.V., Khaldeev, G.V., and Kichigin, V.I., Navodorazhivanie metallov v elektrolitakh (Hydrogen Treatment of Metals in Electrolytes), Moscow: Mashinostroenie, 1993.

    Google Scholar 

  16. Kolachev, B.A., Vodorodnaya khrupkost’ metallov (Hydrogen Fragility of Metals), Moscow: Metallurgiya, 1985.

    Google Scholar 

  17. Archakov, Yu.A., Vodorodnaya korroziya stali (Hydrogen Corrosion of Steel), Moscow: Metallurgiya, 1985.

    Google Scholar 

  18. Beloglazov, S.M., Elektrokhimicheskii vodorod i metally. Povedenie, bor’ba s okhrupchivaniem (Electrochemical Hydrogen and Metals. Behavior and Fragility Control), Kaliningrad: Kaliningrad. Gos. Univ., 2004.

    Google Scholar 

  19. Povetkin, V.V. and Kovenskii, I.M., Structura elektroliticheskikh pokrytii (The Structure of Electrolytical Coatings), Moscow: Metallurgiya, 1989.

    Google Scholar 

  20. Grankin, E.A., Shalimov, Yu.N., and Ostrovskaya, E.N., The dependence of internal friction of electrolytic chromium on the modes of electrocrystalization, Altern. Energ. Ecol., 2004, no. 7, pp. 12–18.

    Google Scholar 

  21. Zvyagintseva, A.V., Interaction peculiarities of hydrogen and Ni-B galvanic alloys, Carbon Nanomaterials in Clean Energy Hydrogen Systems, Springer, 2008, pp. 437–442.

    Google Scholar 

  22. Afanas’ev, V.V. and Zaikov, G.E., Fizicheskie metody v khimii (Physical Methods in Chemistry), Moscow: Nauka, 1984.

    Google Scholar 

  23. Karyakin, N.I., Bystrov, K.N., and Kireev, P.S., Kratkii spravochnik po fizike (A Short Handbook on Physics), Moscow: Vysshaya Shkola, 1964.

    Google Scholar 

  24. Elementarnyi uchebnik fiziki (Elementary Schoolbook on Physics), Landsberg, G.S., Ed., Moscow: Nauka, 1964.

    Google Scholar 

  25. Gamburg, Yu.D., Elektrokhimicheskaya kristallizatsiya metallov i splavov (Electrochemical Crystallization of Metals and Alloys), Moscow: Yanus-K, 1997.

    Google Scholar 

  26. Gamburg, Yu.D., Semenov, V.P., Dubovkin, N.F., and Smirnov, L.N., Spravochnik po vodorodu, svoistvam, polucheniyu, transportirovaniyu, primeneniyu (A Handbook on Hydrogen, Its Properties, Obtaining, Transportation, Application), Gamburg, Yu.D. and Dubovkin, N.F., Eds., Moscow: Khimiya, 1989.

  27. Shalimov, Yu.N., Litvinov, Yu.V., and Mandrykina, I.M., Optimizatsiya elektrokhimicheskogo protsessa obrabotki alyuminievoi fol’gi v proizvodstve kondensatorov (Optimization of Electrochemical Process of Treatment of Aluminum Foil in Manufacturing Capacitors), Voronezh: Voronezh. Gos. Tekh. Univ., 2000.

    Google Scholar 

  28. Blanter, M.S., Piguzov, Yu.V., et al., Metod vnutrennego treniya v metallovedcheskikh issledovaniyakh (The Method of Internal Treatment in Physicometallurgical Studies), Moscow: Metallurgiya, 1991.

    Google Scholar 

  29. Postnikiv, V.S., Vnutrennee trenie v metallakh (Internal Friction in Metals), Moscow: Metallurgiya, 1974.

    Google Scholar 

  30. Gel’d, P.V., Ryabov, R.A., and Kodes, E.S., Vodorod i nesovershenstva struktury metalla (Hydrogen and Structural Imperfections of Metal), Moscow: Metallurgiya, 1979.

    Google Scholar 

  31. Novik, A. and Berri, B., Relaksatsionnye yavleniya v kristallakh (Relaxation Phenomena in Crystals), Nadgornyi, E.M. and Soifer, Ya.M., Eds., Moscow: Atomizdat, 1975.

  32. Bekman, I.N., Fenomenological description of diffusion in defective media, Fizika, khimiya i mekhanika poverkhnosti. Vzaimodeistvie vodoroda s metallami (Physics, Chemistry and Mechanics of Surface. Interaction of Hydrogen with Metals), Zakharov, A.P., Ed., Moscow: Nauka, 1987.

    Google Scholar 

  33. Lyubov, B.Ya., Diffuznye izmeneniya defeknoi structury tverdykh tel (Diffusion Changes in Defective Structures of Solid Bodies), Moscow: Metallurgiya, 1985.

    Google Scholar 

  34. Grankin, E.A., Shalimov, Yu.N., and Ostrovskaya, E.N., Hydrogen treatment of electrolytic sediments of chromium, nickel and their alloys, Altern. Energ. Ecol., 2005, no. 6, pp. 13–17.

    Google Scholar 

  35. Zvyagintseva, A.V., Interrelation of structure and properties of electroplated coatings alloyed with boron in the electronic articles, Galvanotekh. Obrab. Poverkh., 2007, vol. XV, no. 1, pp. 16–22.

    Google Scholar 

  36. Krishtal, M.A., Piguzov, Yu.V., and Golovin, S.A., Vnutrennee trenie v metallakh i splavakh (Internal Friction in Metals and Alloys), Moscow: Metallurgiya, 1964.

    Google Scholar 

  37. Shalimov, Yu.N., Gusev, A.L., Kharchenko, Yu.V., Litvinov, E.L., and Kudryash, V.I., Classic and alternative approaches to interaction of hydrogen with metals during electrochemical reduction on the cathode, Altern. Energ. Ecol., 2007, vol. 8, no. 52, pp. 35–42.

    Google Scholar 

  38. Aleksandrov, L.N. and Mordyuk, V.S., Vnutrennee trenie i fizicheskie svoistva tugoplavkikh metallov (Internal Friction and Physical Properties of Refractory Metals), Saransk: Mordov. Knizh. Izd., 1965.

    Google Scholar 

  39. J. Friedel, Dislocations, Paris: Gauthier-Villars, 1956.

    Google Scholar 

  40. Kudinov, G.M. and Lyubov, B.Ya., The influence of structural defects on diffusion of interstitial impurities in metals, Fiz. Met. Metalloved., 1981, vol. 51, no. 6, pp. 1297–1300.

    Google Scholar 

  41. Zvyagintseva, A.V., The dependence of interaction of metals with hydrogen on the structure of electrochemical systems, Uchenye zapiski Tavricheskogo nats. Univ. Vernadskogo. Ser. biologiya, khimiya, 2013, vol. 26, no. 65, pp. 259–269.

    Google Scholar 

  42. Gusev, A.L., Shalimov, Yu.N, and Kharchenko, E.L., Peculiarities of mechanisms of formation of hydrogen compounds of metals in electrochemical systems, Altern. Energ. Ecol., 2007, vol. 3, no. 47, pp. 43–54.

    Google Scholar 

  43. Vlasov, N.M. and Zvyagintseva, A.V., Matematicheskoe modelirovanie vodorodnoi pronitsaemosti metallov (Mathematical Modeling of Hydrogen Permeability of Metals), monograph, Voronezh: Voronezh. Gos. Tekh. Univ., 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zvyagintseva.

Additional information

Original Russian Text © A.V. Zvyagintseva, Yu.N. Shalimov, 2014, published in Elektronnaya Obrabotka Materialov, 2014, No. 6, pp. 13–24.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvyagintseva, A.V., Shalimov, Y.N. On the stability of defects in the structure of electrochemical coatings. Surf. Engin. Appl.Electrochem. 50, 466–477 (2014). https://doi.org/10.3103/S106837551406012X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837551406012X

Keywords

Navigation