Skip to main content
Log in

Formation of the hypersensitivity response due to the expression of FeSOD1 gene in tomato when it is inoculated with Phytophthora infestans

  • Crop Research
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

The activity of antioxidant enzymes and ultrastructural changes in tissues inoculated with P. infestans isolate have been studied in the previously developed independent transgenic lines of tomato with FeSOD1 gene and control plants. It is shown that the activity of superoxide dismutase is significantly higher in transgenic plants than that in control plants (nontransgenic plants). Chlorosis and obvious changes in tissue turgor were observed when the control tomato plants were inoculated, which indicates irreversible damages and unimpeded progression of infection. At the same time, the transgenic lines were characterized by the formation of clearly limited zones of damaged cells that rapidly arrested the infection. In addition, the damages differed from those in nontransgenic plants: the cells along the edges of the infection site were smaller and had heavy invaginations of the cell wall. The contacts between the cells were disrupted in this zone, but they were preserved in undisturbed zones of the tissue. Thus, the expression of the FeSOD1 transgene promotes the emergence of the resistance to P. infestans in tomato transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thordal-Christensen, H., Zhang, Z., Wei, Y., and Collinge, D.B., Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction, Plant J., 1997, vol. 11, no. 6, pp. 1187–1194.

    Article  CAS  Google Scholar 

  2. Zuluaga, A.P., Vega-Arreguin, J.C., Fei, Z., Matas, A.J., Patev, S., Fry, W.E., and Rose, J.K.C., Analysis of the tomato leaf transcriptome during successive hemibiotrophic stages of a compatible interaction with the oomycete pathogen phytophthora infestans, Mol. Plant Pathol., 2016, vol. 17, no. 1, pp. 42–54.

    Article  CAS  PubMed  Google Scholar 

  3. Heat, M.C., Hypersensitive response-related death, Plant. Mol. Biol., 2000, vol. 44, pp. 321–334.

    Article  Google Scholar 

  4. Mur, L.A., Kenton, P., Lloyd, A.J., Ougham, H., and Prats, E., The hypersensitive response: The centenary is upon us but how much do we know? J. Exp. Bot., 2008, vol. 59, pp. 501–520.

    Article  CAS  PubMed  Google Scholar 

  5. Clough, S.J., Fengler, K.A., Yu, I.-C., Lippok, B., Smith, R.K., and Bent, A.F., The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 9323–9328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. del Pozo, O. and Lam, E., Caspases and programmed cell death in the hypersensitive response of plants to pathogens, Curr. Biol., 1998, vol. 8, pp. 1129–1132.

    Article  PubMed  Google Scholar 

  7. Montillet, J.L., Chamnongpol., S., Rustérucci, C., Dat, J., Van De Cotte, B., Agnel, J.-P., Battesti, C., Inze, D., Van Breusegem, F., and Triantaphylides, C., Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves, Plant Physiol., 2005, vol. 138, pp. 1516–1526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pavet, V., Olmos, E., Kiddle, G., Mowla, S., Kumar, S., Antoniw, J., Alvarez, M.E., and Foyer, C.H., Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis, Plant Physiol., 2005, vol. 139, pp. 1291–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fobert, P.R. and Després, C., Redox control of systemic acquired resistance, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 378–382.

    Article  CAS  PubMed  Google Scholar 

  10. Torres, M.A., Jones, J.D.G., and Dangl, J.L., Reactive oxygen species signaling in response to pathogens, Plant Physiol., 2006, vol. 141, pp. 373–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, Y., Ren, D., Pike, S., Pallardy, S., Gassmann, W., and Zhang, S., Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade, Plant J., 2007, vol. 51, pp. 941–954.

    Article  CAS  PubMed  Google Scholar 

  12. Levine, A., Tenhaken, R., Dixon, R., and Lamb, C., H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response, Cell, 1994, vol. 79, pp. 583–593.

    Article  CAS  PubMed  Google Scholar 

  13. Alvarez, M.E., Pennell, R.I., Meijer, P.-J., Ishikawa, A., Dixon, R.A., and Lamb, C., Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity, Cell, 1998, vol. 92, pp. 773–784.

    Article  CAS  PubMed  Google Scholar 

  14. Sticher, L., Mauch-Mani, B., and Métraux, J.P., Systemic acquired resistance, Annu. Rev. Phytopathol., 1997, vol. 35, pp. 235–270.

    Article  CAS  PubMed  Google Scholar 

  15. Conrath, U., Thulke, O., Katz, V., Schwindling, S., and Kohler, A., Priming as a mechanism in induced systemic resistance of plants, Eur. J. Plant Pathol., 2001, vol. 107, pp. 113–119.

    Article  CAS  Google Scholar 

  16. Kamoun, S., Nonhost resistance to Phytophthora: Novel prospects for a classical problem, Curr. Opin. Plant Biol., 2001, vol. 4, pp. 295–300.

    Article  CAS  PubMed  Google Scholar 

  17. Baranenko, V.V., Superoxide dismutase in the plant cells, Tsitologiya, 2006, vol. 48, no. 6, pp. 465–474.

    CAS  Google Scholar 

  18. Serenko, E.K., Baranova, E.N., Balakhnina, T.I., Kurenina, L.V., Gulevich, A.A., Kosobruhov, A.A., Maysurian, A.N., and Polyakov, V.Y., Structural organization of chloroplast of tomato plants Solanum lycopersicum transformed by Fe-containing superoxide dismutase, Biochemistry (Moscow) Suppl. Ser. A: Membrane Cell Biol., 2011, vol. 5, pp. 177–184.

    Article  Google Scholar 

  19. Baranova, E.N., Nodel’man, E.K., Kurenina, L.V., Gulevich, A.A., Baranova, G.B., Bogoutdinova, L.R., Akanov, E.N., and Khaliluev, M.R., Ultrastructural organization of chloroplasts and mitochondria of transgenic tomato plants expressing the FeSOD1 gene from Arabidopsis thaliana (L.) Heynh. under salt stress, Russ. Agr. Sci., 2014, vol. 40, pp. 426–431.

    Article  Google Scholar 

  20. Mamonov, A.G., Vasil’chenko, V.V., and Smirnov, A.N., Comparison of P. infestans isolates, collected from potato and tomato plants, for manifestation of aggressiveness on tuber discs of different varieties of potatoes, Izv. S-kh. Akad. im. K. A. Timiryazeva, 2012, no. 5, pp. 61–72.

    Google Scholar 

  21. Khaliluev, M.R., Mamonov, A.G., Smirnov, A.N., Kharchenko, P.N., and Dolgov, S.V., Expression of genes encoding chitin-binding proteins (PR-4) and hevein-like antimicrobial peptides in transgenic tomato plants enhanced resistanse to Phytophthora infestance, Russ. Agric. Sci., 2011, vol. 37, pp. 297–302.

    Article  Google Scholar 

  22. Giannopolitis, C.N. and Ries, S.K., Superoxide dismutases I. Occurrence in higher plants, Plant Physiol., 1977, vol. 59, pp. 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  24. Reynolds, E.S., The use of lead citrate at high ph as an electron-opaque stain in electron microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Badawi, G.H., Yamauchi, Y., Shimada, E., Sasaki, R., Kawano, N., Tanaka, K., and Tanaka, K., Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts, Plant Sci., 2004, vol. 166, pp. 919–928.

    Article  Google Scholar 

  26. Pavlovskaya, N.E. and Grinblat, A.I., Reactive oxygen species and apoptosis in wheat and peas, S-kh. Biol., 2010, no. 1, pp. 51–55.

    Google Scholar 

  27. Li, J., Luan, Y., and Liu, Z., SpWRKY1 mediates resistance to Phytophthora infestans and tolerance to salt and drought stress by modulating reactive oxygen species homeostasis and expression of defense-related genes in tomato, Plant Cell Tissue Organ Cult., 2015, vol. 123, pp. 67–81.

    Article  CAS  Google Scholar 

  28. Tseng, M.J., Liu, C.W., and Yiu, J.C., Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both the superoxide dismutase and catalase in chloroplasts, Plant Physiol. Biochem., 2007, vol. 45, pp. 822–833.

    Article  CAS  PubMed  Google Scholar 

  29. Zurbriggen, M.D., Carillo, N., Tognetti, V.B., Melzer, M., Peisker, M., Hause, B., and Hajirezaei, M.-R., Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria, Plant J., 2009, vol. 60, pp. 962–973.

    Article  CAS  PubMed  Google Scholar 

  30. Higaki, T., Goh, T., Hayashi, T., Kutsuna, N., Kadota, N., Hasezawa, S., Sano, T., and Kuchitsu, K., Elicitor-induced cytoskeletal rearrangement relates to vacuolar dynamics and execution of cell death: in vivo imaging of hypersensitive cell death in tobacco BY-2 cells, Plant Cell Physiol., 2007, vol. 48, pp. 1414–1425.

    Article  CAS  PubMed  Google Scholar 

  31. Soda, N., Singla-Pareek, S.L., and Pareek, A., Abiotic stress response in plants: Role of cytoskeleton, in Abiotic Stress Response in Plants, Tuteja, N. and Gill-Weinheim, S.S., Eds., Wiley-VCH, 2016, pp. 107–129.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Baranova.

Additional information

Original Russian Text © E.N. Baranova, L.V. Kurenina, A.N. Smirnov, O.O. Beloshapkina, A.A. Gulevich, 2016, published in Rossiiskaya Sel’skokhozyaistvennaya Nauka, 2016, No. 6, pp. 16–21.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranova, E.N., Kurenina, L.V., Smirnov, A.N. et al. Formation of the hypersensitivity response due to the expression of FeSOD1 gene in tomato when it is inoculated with Phytophthora infestans . Russ. Agricult. Sci. 43, 15–21 (2017). https://doi.org/10.3103/S1068367417010049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367417010049

Keywords

Navigation