Skip to main content
Log in

Ground States Solutions for a Modified Fractional Schrödinger Equation with a Generalized Choquard Nonlinearity

  • Published:
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) Aims and scope Submit manuscript

Abstract

In this paper, using variational methods, we study the existence of ground states solutions to the modified fractional Schrödinger equations with a generalized Choquard nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Pekar, Untersuchung über die Elektronentheorie der Kristalle (Akademie Verlag, Berlin, 1954).

    MATH  Google Scholar 

  2. P. d’Avenia, G. Siciliano, and M. Squassina, ‘‘On fractional Choquard equations,’’ Math. Models Methods Appl. Sci. 25, 1447–1476 (2014). https://doi.org/10.1142/S0218202515500384

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Guo and T. Hu, ‘‘Existence and asymptotic behavior of the least energy solutions for fractional Choquard equations with potential well’’ (2017). arXiv:1703.08028 [math.AP]

  4. F. Gao, Z. Shen, and M. Yang, ‘‘On the critical Choquard equation with potential well’’ (2017). arXiv:1703.01737 [math.AP]

  5. T. Mukherjee and K. Sreenadh, ‘‘Fractional Choquard equation with critical nonlinearities,’’ Nonlinear Differ. Equations Appl. 24, 63 (2017). https://doi.org/10.1007/s00030-017-0487-1

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Mukherjee and K. Sreenadh, ‘‘On Dirichlet problem for fractional \(p\)-Laplacian with singular nonlinearity,’’ Adv. Nonlinear Anal. 8, 52–72 (2019). https://doi.org/10.1515/anona-2016-0100.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Lan and X. He, ‘‘The Nehari manifold for a fractional critical Choquard equation involving sign-changing weight functions,’’ Nonlinear Anal. 180, 236–263 (2019). https://doi.org/10.1016/j.na.2018.10.010

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Ma and J. Zhang, ‘‘Existence and multiplicity of solutions for fractional Choquard equations,’’ Nonlinear Anal. 164, 100–117 (2017). https://doi.org/10.1016/j.na.2017.07.011

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Pucci, M. Xiang, and B. Zhang, ‘‘Existence results for Schrödinger–Choquard–Kirchhoff equations involving the fractional \(p\)-Laplacian,’’ Adv. Calculus Var. 12, 253–275 (2017). https://doi.org/10.1515/acv-2016-0049

    Article  MATH  Google Scholar 

  10. F. Wang and M. Xiang, ‘‘Multiplicity of solutions for a class of fractional Choquard–Kirchhoff equations involving critical nonlinearity,’’ Anal. Math. Phys. 9, 1–16 (2017). https://doi.org/10.1007/s13324-017-0174-8

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Wang, J. Zhang, and Y. Cui, ‘‘Multiple solutions to the Kirchhoff fractional equation involving Hardy–Littlewood–Sobolev critical exponent,’’ Boundary Value Problems 2019, 124 (2019). https://doi.org/10.1186/s13661-019-1239-4

    Article  MathSciNet  Google Scholar 

  12. Y. Wang and Y. Yang, ‘‘Bifurcation results for the critical Choquard problem involving fractional \(p\)-Laplacian operator,’’ Boundary Value Problems 2018, 132 (2018). https://doi.org/10.1186/s13661-018-1050-7

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Mukherjee and K. Sreenadh, ‘‘Fractional Choquard equation with critical nonlinearities,’’ Nonlinear Differ. Equations Appl. 24, 63 (2017). https://doi.org/10.1007/s00030-017-0487-1

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Gao and M. Yang, ‘‘On the Brezis–Nirenberg type critical problem for nonlinear Choquard equation,’’ Sci. China Math. 61, 1219–1242 (2018). https://doi.org/10.1007/s11425-016-9067-5

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Servadei and E. Valdinoci, ‘‘The Brezis–Nirenberg result for the fractional Laplacian,’’ Trans. Amer. Math. Soc. 367, 67–102 (2015). https://doi.org/10.1090/S0002-9947-2014-05884-4

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Servadei and E. Valdinoci, ‘‘A Brezis–Nirenberg result for nonlocal critical equations in low dimension,’’ Commun. Pure Appl. Anal. 12, 2445–2464 (2013). https://doi.org/10.3934/cpaa.2013.12.2445

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Tan, ‘‘The Brezis–Nirenberg type problem involving the square root of the Laplacian,’’ Calculus Var. Partial Differ. Equations 36, 21–41 (2011). https://doi.org/10.1007/s00526-010-0378-3

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Shao and Y. Wang, ‘‘Existence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity,’’ Open Math. 19, 259–267 (2021). https://doi.org/10.1515/math-2021-0025

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Zhang and C. Ji, ‘‘Ground state solutions for a generalized quasilinear Choquard equation,’’ Math. Meth. Appl Sci. 44, 6048–6055 (2021). https://doi.org/10.1002/mma.7169

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Song and S. Shi, ‘‘Existence and multiplicity of solutions for Kirchhoff equations with Hardy–Littlewood–Sobolev critical nonlinearity,’’ Appl. Math. Lett. 92, 170–175 (2019). https://doi.org/10.1016/j.aml.2019.01.017

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Devillanova and G. Carlo Marano, ‘‘A free fractional viscous oscillator as a forced standard damped vibration,’’ Fract. Calculus Appl. Anal. 19, 319–356 (2016). https://doi.org/10.1515/fca-2016-0018

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Fiscella and E. Valdinoci, ‘‘A critical Kirchhoff type problem involving a nonlocal operator,’’ Nonlinear Anal. 94, 156–170 (2014). https://doi.org/10.1016/j.na.2013.08.011

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Gao and M. Yang, ‘‘On nonlocal Choquard equations with Hardy–Littlewood–Sobolev critical exponents,’’ J. Math. Anal. Appl. 448, 1006–1041 (2017). https://doi.org/10.1016/j.jmaa.2016.11.015

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Goel and K. Sreenadh, ‘‘Kirchhoff equations with Hardy–Littlewood–Sobolev critical nonlinearity,’’ Nonlinear Anal. 186, 162–186 (2019). https://doi.org/10.1016/j.na.2019.01.035

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Mukherjee and K. Sreenadh, ‘‘Positive solutions for nonlinear Choquard equation with singular nonlinearity,’’ Complex Var. Elliptic Equations 62, 1044–1071 (2017). https://doi.org/10.1080/17476933.2016.1260559

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Li, P. Wang, and C. Wei, ‘‘Multiplicity of solutions for a class of Kirchhoff type equations with Hardy–Littlewood–Sobolev critical nonlinearity,’’ Appl. Math. Lett. 102, 106105 (2020). https://doi.org/10.1016/j.aml.2019.106105

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Molica Bisci, V. Radulescu, and R. Servadei, ‘‘Variational methods for nonlocal fractional problems,’’ in Encyclopedia of Mathematics and Its Applications, vol. 162 (Cambridge Univ. Press, Cambridge, 2016).

    MATH  Google Scholar 

  28. V. Moroz and J. Van Schaftingen, ‘‘Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics,’’ J. Funct. Anal. 265 (2), 153–184 (2013). https://doi.org/10.1016/j.jfa.2013.04.007

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Wang and M. Xiang, ‘‘Multiplicity of solutions to a nonlocal Choquard equation involving fractional magnetic operators and critical exponent,’’ Electron. J. Differ. Equations 306, 1–11 (2016).

    MathSciNet  MATH  Google Scholar 

  30. X. Yang, X. Tang, and G. Gu, ‘‘Concentration behavior of ground states for a generalized quasilinear Choquard equation,’’ Math. Methods Appl. Sci. 43, 3569–3585 (2020). https://doi.org/10.1002/mma.6138

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Gao and J. Zhou, ‘‘Semiclassical states for critical Choquard equations with critical frequency,’’ Topol. Methods Nonlinear Anal. 57, 107–133 (2021). https://doi.org/10.12775/TMNA.2020.001

    Article  MathSciNet  MATH  Google Scholar 

  32. X. Wu, W. Zhang, and X. Zhou, ‘‘Ground state solutions for a modified fractional Schrödinger equation with critical exponent,’’ Math. Methods Appl. Sci. , (2020). https://doi.org/10.1002/mma.6090

  33. N. Nyamoradi and L. I. Zaidan, ‘‘Existence and multiplicity of solutions for fractional \(p\)-Laplacian Schrödinger–Kirchhoff type equations,’’ Complex Var. Elliptic Equations 63, 346–359 (2017). https://doi.org/10.1080/17476933.2017.1310851

    Article  MATH  Google Scholar 

  34. P. Pucci, M. Xiang, and B. Zhang, ‘‘Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in \(\mathbb{R}^{N}\),’’ Calculus Var. 54, 2785–2806 (2015). https://doi.org/10.1007/s00526-015-0883-5

    Article  MathSciNet  MATH  Google Scholar 

  35. W. Chen, S. Mosconi, and M. Squassina, ‘‘Nonlocal problems with critical Hardy nonlinearity,’’ J. Funct. Anal. 275, 3065–3114 (2018). https://doi.org/10.1016/j.jfa.2018.02.020

    Article  MathSciNet  MATH  Google Scholar 

  36. E. H. Lieb and M. Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14 (American Mathematical Society, Providence, 2001).

  37. W. Chen, ‘‘Critical fractional p-Kirchhoff type problem with a generalized Choquard nonlinearity,’’ J. Math Phys. 59, 121502 (2018). https://doi.org/10.1063/1.5052669

    Article  MathSciNet  MATH  Google Scholar 

  38. H. Brézis and E. Lieb, ‘‘A relation between pointwise convergence of functions and convergence of functionals,’’ Proc. Am. Math. Soc. 88, 486–490 (1983). https://doi.org/10.1090/S0002-9939-1983-0699419-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for his/her valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Dehsari or N. Nyamoradi.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehsari, I., Nyamoradi, N. Ground States Solutions for a Modified Fractional Schrödinger Equation with a Generalized Choquard Nonlinearity. J. Contemp. Mathemat. Anal. 57, 131–144 (2022). https://doi.org/10.3103/S1068362322030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068362322030025

Keywords:

Navigation