Skip to main content
Log in

Some Aspects of the Synthesis, Characterization and Modification of Poly(ether)sulfone Polymeric Membrane for Removal of Persistent Organic Pollutants in Wastewater Samples

  • WATER TREATMENT AND DEMINERALIZATION TECHNOLOGY
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

The disposal of persistent organic pollutants (POPs) in water streams continues to be a challenge, where textile and pharmaceutical industries are major contributors to this global challenge. This review paper focuses on chemical and physical modification processes in place to successfully increase the performance of poly(ether)sulfone polymeric membranes with a much more improved hydrophilicity for the removal of POPs. This work is carried out for the effective and efficient removal of persistent organic pollutants in wastewater treatment plants. Poly(ether)sulfone remains the most preferred polymer in the synthesis and application of nano-filtration (NF) and ultra-filtration (UF) membranes. Using specific composition values, the phase inversion process is used for the distribution of additives or particles unto the membrane scaffold in order to fabricate the PES polymer. This tends to influence the polymer’s ideal chemical, mechanical and thermal stability. However, an observed high hydrophobicity is its main shortcoming, which frequently leads to the increased membrane fouling and flux. The performance of PES can however be improved by fabrication with suitable additives, and this automatically increases the hydrophilicity of the synthesized membrane. An approach in the PES modification differs in processes, (1) graft polymerization, where nano and micro particles are chemically imparted on the membrane scaffold; (2) plasma treatment, which uses chemical radicals and electronically excited particles, or gas under atmospheric pressure; and (3) physical pre-adsorption of hydrophilic components onto the membrane scaffold. Also, the bulk modification process was discussed further in this work as it seeks to bring a new approach in the modification process of PES membrane. This applies modification of the membrane materials before membrane synthesis by incorporating hydrophilic additives in the membrane matrix solution during the synthesis. Sulfonation and carboxylation techniques are discussed at the core of their mechanisms. In conclusion, polymer blending results in separation efficiencies being increased significantly and also resulting in improved surface characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. WHO, Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines, World Health Organization (WHO), 2017.

    Google Scholar 

  2. Drinan, J.E. and Spellman, F., Water and Wastewater Treatment: A Guide for the Nonengineering Professional, Boca Raton: CRC, 2012. https://doi.org/10.1201/9781420031799

  3. Badmus, K.O., Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process, Environ. Sci. Pollut. Res. Int., 2018, vol. 25, no. 8, pp. 7299–7314. https://doi.org/10.1007/s11356-017-1171-z

    Article  CAS  Google Scholar 

  4. Zheng, X., Zhang, Z., Yu, D., Chen, X., Cheng, R., et al., Overview of membrane technology applications for industrial wastewater treatment in China to increase water supply, Resour. Conserv. Recycl., 2015, vol. 105, pp. 1–10. https://doi.org/10.1016/j.resconrec.2015.09.012

    Article  Google Scholar 

  5. Wang, H., Park, M., Liang, H., Wu, S., Lopez, I.J., Ji, W., Li, G., and Snyder, S.A., Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation, Water Res., 2017, vol. 125, pp. 42–51. https://doi.org/10.1016/j.watres.2017.08.030

    Article  CAS  Google Scholar 

  6. Ulbricht, M., Advanced functional polymer membranes, Polymer, 2006, vol. 47, no. 7, pp. 2217–2262. https://doi.org/10.1016/j.polymer.2006.01.084

    Article  CAS  Google Scholar 

  7. Li, J., Chen, C., Zhao, Y., Hu, J., Shao, D. and Wang, X., Synthesis of water-dispersible Fe3O4@β-cyclodextrin by plasma-induced grafting technique for pollutant treatment, Chem. Eng. J., 2013, vol. 229, pp. 296–303. https://doi.org/10.1016/j.cej.2013.06.016

    Article  CAS  Google Scholar 

  8. Thamaraiselvan, C. and Noel, M., Membrane processes for dye wastewater treatment: Recent progress in fouling control, Crit Rev. Environ. Sci. Technol., 2015, vol. 45, no. 10, pp. 1007–1040. https://doi.org/10.1080/10643389.2014.900242

    Article  CAS  Google Scholar 

  9. Fini, M.N., Madsen, H.T., and Muff, J., Performance evaluation of NF/RO membranes for separation of BAM, MCPA and MCPP from Danish drinking water, Proceedings of AMTA/AWWA Membrane Technology Conference, West Palm Beach, FL, 2018.

  10. Babu, J. and Murthy, Z., Treatment of textile dyes containing wastewaters with PES/PVA thin film composite nanofiltration membranes, Sep. Purif. Technol., 2017, vol. 183, pp. 66–72. https://doi.org/10.1016/j.seppur.2017.04.002

    Article  CAS  Google Scholar 

  11. Liu, Y., Ai, K., and Lu, L., Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields, Chem. Rev., 2014, vol. 114, no. 9, pp. 5057–5115. https://doi.org/10.1021/cr400407a

    Article  CAS  Google Scholar 

  12. Tullis, R.H., Duffin, R.P., Zech, M., and Ambrus, J.L., Affinity hemodialysis for antiviral therapy, Blood Purif., 2003, vol. 21, no. 1, pp. 58–63. https://doi.org/10.1159/000067865

    Article  CAS  Google Scholar 

  13. Liu, Z., Deng, X., Wang, M., Chen, J., Zhang, A., Gu, Z. and Zhao, C., BSA-modified polyethersulfone membrane: Preparation, characterization and biocompatibility, J. Biomater. Sci., Polym. Ed., 2009, vol. 20, no. 3, pp. 377–397. https://doi.org/10.1163/156856209x412227

    Article  CAS  Google Scholar 

  14. Fernandez-Gonzalez, R., Yebra-Pimentel, I., Martinez-Carballo, E., and Simal-Gandara, J., A critical review about human exposure to polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) through foods, Crit. Rev. Food Sci. Nutr., 2015, vol. 55, no. 11, pp. 1590–1617. https://doi.org/10.1080/10408398.2012.710279

    Article  CAS  Google Scholar 

  15. Mustereţ, C.P. and Teodosiu, C., Removal of persistent organic pollutants from textile wastewater by membrane processes, Environ. Eng. Manage. J., 2007, vol. 6, no. 3, pp. 175–187. https://doi.org/10.30638/eemj.2007.022

    Article  Google Scholar 

  16. Bagheri, M., Rajabzadeh, S., Elmarghany, M.R., Moattari, R.M., Bakhtiari, O., Inada, A., Matsuyama, H., and Mohammadi, T., Preparation of a positively charged NF membrane by evaporation deposition and the reaction of PEI on the surface of the C-PES/PES blend UF membrane, Prog. Org. Coat., 2020, vol. 141, p. 105570. https://doi.org/10.1016/j.porgcoat.2020.105570

    Article  CAS  Google Scholar 

  17. Mulder, M. and J. Mulder, Basic Principles of Membrane Technology, New York: Springer, 1996.

    Book  Google Scholar 

  18. Plakas, K.V. and A.J. Karabelas, Removal of pesticides from water by NF and RO membranes—A review, Desalination, 2012, vol. 287, pp. 255–265. https://doi.org/10.1016/j.desal.2011.08.003

    Article  CAS  Google Scholar 

  19. Kiso, Y., Nishimura, Y., Kitao, T., and Nishimura, K., Rejection properties of non-phenylic pesticides with nanofiltration membranes, J. Membr. Sci., 2000, vol. 171, no. 2, pp. 229–237. https://doi.org/10.1016/s0376-7388(00)00305-7

    Article  CAS  Google Scholar 

  20. Abdel-Karim, A., El-Naggar, M.E., Radwan, E.K., Mohamed, I.M., Azaam, M., and Kenawy, E., High-performance mixed-matrix membranes enabled by organically/inorganic modified montmorillonite for the treatment of hazardous textile wastewater, Chem. Eng. J., 2021, vol. 405, p. 126964. https://doi.org/10.1016/j.cej.2020.126964

    Article  CAS  Google Scholar 

  21. Al Malek, S., Haddi, H., and Al-Abachi, A.M., Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone, Desalination, 2012, vol. 288, pp. 31–39. https://doi.org/10.1016/j.desal.2011.12.006

    Article  CAS  Google Scholar 

  22. Salgin, S., Salgin, U., and Soyer, N., Streaming potential measurements of polyethersulfone ultrafiltration membranes to determine salt effects on membrane zeta potential, Int. J. Electrochem. Sci., 2013, vol. 8, no. 3, pp. 4073–4084.

    Article  CAS  Google Scholar 

  23. Wang, T., Zhao, C., Li, P., Li, Y., and Wang, J., Fabrication of novel poly (m-phenylene isophthalamide) hollow fiber nanofiltration membrane for effective removal of trace amount perfluorooctane sulfonate from water, J. Membr. Sci., 2015, vol. 477, pp. 74–85. https://doi.org/10.1016/j.memsci.2014.12.038

    Article  CAS  Google Scholar 

  24. Blanco, J.F., Sublet, J., Nguyen, Q.T., and Schaetzel, P., Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process, J. Membr. Sci., 2006, vol. 283, nos. 1–2, pp. 27–37. https://doi.org/10.1016/j.memsci.2006.06.011

    Article  CAS  Google Scholar 

  25. Lin, S.W., Lopez-Garcia, F.J., Perez-Sicarios, S., and Felix-Navarro, R.M., New method of synthesis of sulfonated polyethersulfone (SPES) and effect of pH on synthetic gray water filtration performance by negatively charged SPES/PS UF membranes, Desalin. Water Treat., 2016, vol. 57, no. 52, pp. 24807–24819. https://doi.org/10.1080/19443994.2016.1157041

    Article  CAS  Google Scholar 

  26. Klaysom, C., Ladewig, B.P., Lu, G.Q.M., and Wang, L., Preparation and characterization of sulfonated polyethersulfone for cation-exchange membranes, J. Membr. Sci., 2011, vol. 368, nos. 1–2, pp. 48–53. https://doi.org/10.1016/j.memsci.2010.11.006

    Article  CAS  Google Scholar 

  27. Ramachandran, B., Christa, J., and Shainy, F., A comparative study of polyethylene terephthalate surface carboxylation techniques: Characterization, in vitro haemocompatibility and endothelialization, React. Funct. Polym., 2018, vol. 122, pp. 22–32. https://doi.org/10.1016/j.reactfunctpolym.2017.11.001

    Article  CAS  Google Scholar 

  28. Zarei, F., Moattari, R.M., Rajabzadeh, S., Bagheri, M., Taghizadeh, A., Mohammadi, T., and Matsuyama, H., Preparation of thin film composite nano-filtration membranes for brackish water softening based on the reaction between functionalized UF membranes and polyethyleneimine, J. Membr. Sci., 2019, vol. 588, pp. 117207. https://doi.org/10.1016/j.memsci.2019.117207

    Article  CAS  Google Scholar 

  29. Wang, D., Zou, W., Li, L., Wei, Q., Sun, S., and Zhao, C., Preparation and characterization of functional carboxylic polyethersulfone membrane, J. Membr. Sci., 2011, vol. 374, nos. 1–2, pp. 93–101. https://doi.org/10.1016/j.memsci.2011.03.021

    Article  CAS  Google Scholar 

  30. Cao, X.L., Cheng, C., Yin, Z.H., Bai, P.L., Wei, Q., Fang, B.H., Chang S., and Zhao, C.S., Synthesis, characterization, and application of polyethersulfone bound-iminodiacetic acid, J. Appl. Polym. Sci., 2011, vol. 120, no. 1, pp. 345–350. https://doi.org/10.1002/app.33137

    Article  CAS  Google Scholar 

  31. Deng, B., Yang, X., Xie, L., Li, J., Hou, Z., Yao, S., Liang, G., Sheng, K., and Huang, Q., Microfiltration membranes with pH dependent property prepared from poly (methacrylic acid) grafted polyethersulfone powder, J. Membr. Sci., 2009, vol. 330, nos. 1–2, pp. 363–368. https://doi.org/10.1016/j.memsci.2009.01.010

    Article  CAS  Google Scholar 

  32. Boussu, K., Van Baelen, G., Colen, W., Eelen, D., Vanassche, S., Vandecasteele, C., and Van der Bruggen, B., Technical and economical evaluation of water recycling in the carwash industry with membrane processes, Water Sci. Technol., 2008, vol. 57, no. 7, pp. 1131–1135. https://doi.org/10.2166/wst.2008.236

    Article  CAS  Google Scholar 

  33. Navarro, R., Gonzalez, M.P., Saucedo, I., Avila, M., Prádanos, P., Martínez, F., Martín, A., and Hernández, A., Effect of an acidic treatment on the chemical and charge properties of a nanofiltration membrane, J. Membr. Sci., 2008, vol. 307, no. 1, pp. 136–148. https://doi.org/10.1016/j.memsci.2007.09.015

    Article  CAS  Google Scholar 

  34. Kim, J.H. and Kim, C.K., Ultrafiltration membranes prepared from blends of polyethersulfone and poly (1-vinylpyrrolidone-co-styrene) copolymers, J. Membr. Sci., 2005, vol. 262, no. 1–2, pp. 60–68. https://doi.org/10.1016/j.memsci.2005.04.003

    Article  CAS  Google Scholar 

  35. Wang, H., Yu, T., Zhao, C. and Qiyun, D., Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by adding polyvinylpyrrolidone, Fibers Polym., 2009, vol. 10, no. 1, pp. 1–5. https://doi.org/10.1007/s12221-009-0001-4

    Article  CAS  Google Scholar 

  36. Wang, Y.Q., Wang, T., Su, Y.L., Peng, F.B., Wu, H., and Jiang, Z.Y., Protein-adsorption-resistance and permeation property of polyethersulfone and soybean phosphatidylcholine blend ultrafiltration membranes, J. Membr. Sci., 2006, vol. 270, no. 1–2, pp. 108–114. https://doi.org/10.1016/j.memsci.2005.06.044

    Article  CAS  Google Scholar 

  37. Li, S., Cui, Z., Zhang, L., He, B., and Li, J., The effect of sulfonated polysulfone on the compatibility and structure of polyethersulfone-based blend membranes, J. Membr. Sci., 2016, vol. 513, pp. 1–11. https://doi.org/10.1016/j.memsci.2016.04.035

    Article  CAS  Google Scholar 

  38. Lalia, B.S., Kochkodan, V., Hashaikeh, R., and Hilal, N., A review on membrane fabrication: Structure, properties and performance relationship, Desalination, 2013, vol. 326, pp. 77–95. https://doi.org/10.1016/j.desal.2013.06.016

    Article  CAS  Google Scholar 

  39. Freger, V., Arnot, T., and Howell, J., Separation of concentrated organic/inorganic salt mixtures by nanofiltration, J. Membr. Sci., 2000, vol. 178, nos. 1–2, pp. 185–193. https://doi.org/10.1016/s0376-7388(00)00516-0

    Article  CAS  Google Scholar 

  40. Pang, W., Gao, N., and Xia, S., Removal of DDT in drinking water using nanofiltration process, Desalination, 2010, vol. 250, no. 2, pp. 553–556. https://doi.org/10.1016/j.desal.2009.09.022

    Article  CAS  Google Scholar 

  41. Mukherjee, D., Bhattachary, P., Jana, A., Bhattachary, S., Sarkar, S., Ghosh, S., Majumdar, S., and Swarnakar, S., Synthesis of ceramic ultrafiltration membrane and application in membrane bioreactor process for pesticide remediation from wastewater, Process Saf. Environ. Prot., 2018, vol. 116, pp. 22–33. https://doi.org/10.1016/j.psep.2018.01.010

    Article  CAS  Google Scholar 

  42. Guo, W., Ngo, H.H. and Li, J., A mini-review on membrane fouling, Bioresour. Technol., 2012, vol. 122, pp. 27–34. https://doi.org/10.1016/j.biortech.2012.04.089

    Article  CAS  Google Scholar 

  43. Li, X., Sotto, A., Li, J., Van der Bruggen, B., Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles, J. Membr. Sci., 2017, vol. 524, pp. 502–528. https://doi.org/10.1016/j.memsci.2016.11.040

    Article  CAS  Google Scholar 

  44. Guo, H., Tang, X., Ganschow, G., and Korshin, G.V., Differential ATR FTIR spectroscopy of membrane fouling: Contributions of the substrate/fouling films and correlations with transmembrane pressure, Water Res., 2019, vol. 161, pp. 27–34. https://doi.org/10.1016/j.watres.2019.05.086

    Article  CAS  Google Scholar 

  45. Liu, S.X., Kim, J.T., Kim, S., and Singh, M., The effect of polymer surface modification via interfacial polymerization on polymer–protein interaction, J. Appl. Polym. Sci., 2009, vol. 112, no. 3, pp. 1704–1715. https://doi.org/10.1002/app.29606

    Article  CAS  Google Scholar 

  46. Liu, S.X. and Kim, J.T., Characterization of surface modification of polyethersulfone membrane, J. Adhes. Sci. Technol., 2011, vol. 25, nos. 1–3, pp. 193–212. https://doi.org/10.1163/016942410x503311

    Article  CAS  Google Scholar 

  47. Yi, Z., Zhu, L.P., Xu, Y.Y., Zhao, Y.F., Ma, X.T., Zhu, B.K., Polysulfone-based amphiphilic polymer for hydrophilicity and fouling-resistant modification of polyethersulfone membranes, J. Membr. Sci., 2010, vol. 365, nos. 1–2, pp. 25–33. https://doi.org/10.1016/j.memsci.2010.08.001

    Article  CAS  Google Scholar 

  48. Bolong, N., Ismail, A.F., M.R. Salim, M.R., Rana, D., Matsuura, T., Development and characterization of novel charged surface modification macromolecule to polyethersulfone hollow fiber membrane with polyvinylpyrrolidone and water, J. Membr. Sci., 2009, vol. 331, nos. 1–2, pp. 40–49. https://doi.org/10.1016/j.memsci.2009.01.008

    Article  CAS  Google Scholar 

  49. Jansen, J.C., Darvishmanesh, S., Tasselli, F., Bazzarelli, F., Bernardo, P., Tocci, E., Friess, K., Randova, A., Drioli, E., and van der Bruggen, B., Influence of the blend composition on the properties and separation performance of novel solvent resistant polyphenylsulfone/polyimide nanofiltration membranes, J. Membr. Sci., 2013, vol. 447, pp. 107–118. https://doi.org/10.1016/j.memsci.2013.07.009

    Article  CAS  Google Scholar 

  50. Adams, F.V., Edward N. Nxumalo, E.N., Krause, R.W.M., Hoek, E.M.V., Mamba, B.B., Preparation and characterization of polysulfone/β-cyclodextrin polyurethane composite nanofiltration membranes, J. Membr. Sci., 2012, vol. 405, pp. 291–299. https://doi.org/10.1016/j.memsci.2012.03.023

    Article  CAS  Google Scholar 

  51. Mu, L.J. and Zhao, W.Z., Hydrophilic modification of polyethersulfone porous membranes via a thermal-induced surface crosslinking approach, Appl. Surf. Sci., 2009, vol. 255, no. 16, pp. 7273–7278. https://doi.org/10.1016/j.apsusc.2009.03.081

    Article  CAS  Google Scholar 

  52. Peeva, P.D., Million, N., and Ulbricht, U., Factors affecting the sieving behavior of anti-fouling thin-layer cross-linked hydrogel polyethersulfone composite ultrafiltration membranes, J. Membr. Sci., 2012, vol. 390, pp. 99–112. https://doi.org/10.1016/j.memsci.2011.11.025

    Article  CAS  Google Scholar 

  53. Zhao, W., Huang, J., Fang, B., Nie, S., Yi, N., Su, B., Li, H., and Zhao, C., Modification of polyethersulfone membrane by blending semi-interpenetrating network polymeric nanoparticles, J. Membr. Sci., 2011, vol. 369, nos. 1–2, pp. 258–266. https://doi.org/10.1016/j.memsci.2010.11.065

    Article  CAS  Google Scholar 

  54. Yu, S., Zhang, S., Li, F., and Zhao, X., Poly (vinyl pyrrolidone) modified poly (vinylidene fluoride) ultrafiltration membrane via a two-step surface grafting for radioactive wastewater treatment, Sep. Purif. Technol., 2018, vol. 194, pp. 404–409. https://doi.org/10.1016/j.seppur.2017.10.051

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Tshwane University of Technology (TUT) environmental research group for assisting with FTIR and technical support.

Funding

This study was supported by the National Research Foundation (NRF), grant nos. MND190619448884, SFH160701175565, AEMD170601235909.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyabonga Aubrey Mhlongo.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

DATA AVAILABILITY

The data shared will be available upon request from the author(s).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siyabonga Aubrey Mhlongo, Sibali, L.L. & Ndibewu, P.P. Some Aspects of the Synthesis, Characterization and Modification of Poly(ether)sulfone Polymeric Membrane for Removal of Persistent Organic Pollutants in Wastewater Samples. J. Water Chem. Technol. 45, 388–401 (2023). https://doi.org/10.3103/S1063455X23040094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X23040094

Keywords:

Navigation