Skip to main content
Log in

Electrophysics of nanocluster thin-film systems: Achieving superconducting topological states

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The possibility of controlling the functional properties of nanostructured thin films deposited on solid substrates using lasers stems from the different topology and elemental composition of the deposited materials. Quantum-correlated states that emerge in the deposited granular nanocluster semiconductor/ metal structures lead to hopping/tunneling conductivity. The possibility of high-temperature superconductivity in such nanocluster structures that are both stable and can give rise to different (nonphonon) electron pairing mechanisms is discussed. An increase in electrical conductivity (by several orders of magnitude) is observed in experiments, depending on the surface and boundary conditions in various topologically organized cluster systems. The problem is to find the optimum numerical relations between the topological parameters in order to obtain the patterns of directivity (such as the Bragg resonance) needed for a sharp increase in electrical conductivity in selective directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shmidt, V.V., Vvedenie v fiziku sverkhprovodnikov (Introduction to Superconductor Physics), Moscow: MTsNMO, 2000, 2nd ed.

    Google Scholar 

  2. Landau, L.D. and Lifshitz, E.M., Elektrodinamika sploshnoi sredy (Electrodynamics of Continuous Media), Moscow: Nauka, 1982, 2nd ed.

    Google Scholar 

  3. Arakelyan, S.M., Kucherik, A.O., Prokoshev, V.G., et al., Vvedenie v femtonanofotoniku: fundamental’nye osnovy i lazernye metody upravlyaemogo polucheniya i diagnostiki nanostrukturirovannykh materialov (Introduction to Femtonanophotonics: Fundamentals and Laser Methods for Controlled Fabrication and Diagnostics of Nanostructured Materials), Arakelyan, S.M., Ed., Moscow: Logos, 2015.

    Google Scholar 

  4. Uvarov, N.F., Kompozitnye tverdye elektrolity (Composite Solid Electrolytes), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2008.

    Google Scholar 

  5. Dragunov, V.P., Neizvestnyi, I.G., and Gridchin, V.A., Osnovy nanoelektroniki (Introduction to Nanoelectronics), Moscow: Logos, 2006.

    Google Scholar 

  6. Antonets, I.V., Kotov, L.N., Nekipelov, S.V., and Golubev, E.A., Tech. Phys., 2004, vol. 49, no. 3, p.306.

    Article  Google Scholar 

  7. Kresin, V.Z. and Ovchinnikov, Yu.I., Phys.-Usp., 2008, vol. 51, p.427.

    Article  ADS  Google Scholar 

  8. Katsnelson, A. and Olemskoi, A., Microscopic Theory of Nonhomogeneous Structures, Moscow: Mir, 1990.

    Google Scholar 

  9. Gantmakher, V.F., Elektrony v neuporyadochennykh sredakh (Electrons in Disordered Media), Moscow: Fizmatlit, 2013.

    Google Scholar 

  10. Kucherik, A., Arakelian, S., Vartanyan, T., Kutrovskaya, S., Osipov, A., Povolotskaya, A., Povolotskii, A., and Man’shina, A., Opt. Spectrosc., 2016, vol. 121, no. 2, p.263.

    Article  ADS  Google Scholar 

  11. Emel’yanov, V.I. and Koroteev, N.I., Sov. Phys. Usp., 1981, vol. 24, p.864.

    Article  ADS  Google Scholar 

  12. Kirkpatrick, S., Rev. Mod. Phys, 1973, vol. 45, no. 4, p.574.

    Article  ADS  Google Scholar 

  13. De Gennes, P-G., The Physics of Liquid Crystals, Oxford: Clarendon Press, 1974.

    MATH  Google Scholar 

  14. Bogolyubov, N.N. and Shirkov, D.V., Vvedenie v teoriyu kvantovannykh polei (Introduction to the Quantized Field Theory), Moscow: Nauka, 1984, 4th ed.

    Google Scholar 

  15. Antipov, A.A., Arakelian, S.M., Kutrovskaya, S.V., Kucherik, A.O., Nogtev, D.S., Osipov, A.V., Emel’yanov, V.I., and Zimin, S.P., Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, no. 7, p.818.

    Article  Google Scholar 

  16. Arakelian, S., Vartanyan, T., Istratov, A., et al., Proc. SPIE, 2016, vol. 9884, p. 98843J.

    Google Scholar 

  17. Arakelian, S., Kutrovskaya, S., Kucherik, A., et al., Opt. Quantum Electron., 2016, vol. 48, no. 11, p.505.

    Article  Google Scholar 

  18. Arakelian, S., Emel’yanov, V., Kutrovskaya, S., et al., Opt. Quantum Electron., 2016, vol. 48, no. 6, p.342.

    Article  Google Scholar 

  19. Abramov, D.V., Arakelyan, S.M., Makov, S.A., Prokoshev, V.G., and Khor’kov, K.S., Tech. Phys. Lett., 2013, vol. 39, no. 8, p.719.

    Article  ADS  Google Scholar 

  20. Khorkov, K., Abramov, D., Kochuev, D., et al., Phys. Procedia, 2016, vol. 83, p.182.

    Article  ADS  Google Scholar 

  21. Laser Optics of Condensed Matter, Birman, J.L., Cummins, H.Z., and Kaplyanskii, A.A., Eds., New York: Plenum, 1988.

  22. Mankowsky, R., Subedi, A., Forst, M., et al., Nature, 2014, vol. 516, p.71.

    Article  ADS  Google Scholar 

  23. Abrikosov, A.A., Osnovy teorii metallov (Introduction to the Theory of Metals), Moscow: Fizmatlit, 2009.

    Google Scholar 

  24. Huang, K., Statistical Mechanics, Wiley, 1963.

    Google Scholar 

  25. Bogolyubov, N.N., Jr. and Sadovniki, B.I., Nekotorye problemy statisticheskoi mekhaniki (Certain Problems of Statistical Mechanics), Moscow: Vysshaya Shkola, 1975.

    Google Scholar 

  26. Kim, Y., Zhang, J., Rossi, E., et al., Phys. Rev. Lett., 2015, vol. 114, no. 2, p. 36804.

    Article  Google Scholar 

  27. Vinogradov, A.P., Dorofeenko, A.V., Merzlikin, A.M., and Lisyansky, A.A., Phys.-Usp., 2010, vol. 53, p.243.

    Article  ADS  Google Scholar 

  28. Kaliteevski, M., Iorsh, I., Brand, S., et al., Phys. Rev. B, 2007, vol. 76, p. 165415.

    Article  ADS  Google Scholar 

  29. Sasin, M.E., Seisyan, R.P., Kalitteevski, M.A., et al., Appl. Phys. Lett., 2008, vol. 92, no. 25, p. 251112.

    Article  ADS  Google Scholar 

  30. Yugai, K.N., Vestn. Omsk. Univ., 2013, no. 2, p.104.

    Google Scholar 

  31. Pronin, A.A., Glushkov, V.V., Kondrin, M.V., Lyapin, A.G., Brazhkin, V.V., Samarin, N.A., and Demishev, S.V., Phys. Solid State, 2007, vol. 49, no. 7, p. 1403.

    Article  ADS  Google Scholar 

  32. Eschrig, M., Nat. Phys., 2009, vol. 5, p.384.

    Article  Google Scholar 

  33. Richter, C. Boschker, H., et al., Nature, 2013, vol. 502, p.528.

    Article  ADS  Google Scholar 

  34. Sedov, E.S., Alodjants, A.P., Arakelian, S.M., et al., Phys. Rev. A, 2014, vol. 89, no. 3, p. 033828.

    Article  ADS  Google Scholar 

  35. Sedov, E.S., Cherotchenko, E.D., Arakelian, S.M., et al., Phys. Rev. B, 2016, vol. 94, no. 12, p. 125309.

    Article  ADS  Google Scholar 

  36. Charukhchyan, M.V., Sedov, E.S., Arakelian, S.M., et al., Phys. Rev. A, 2014, vol. 89, no. 6, p. 063624.

    Article  ADS  Google Scholar 

  37. Antipov, A.A., Arakelyan, S.M., Garnov, S.V., et al., Quantum Electron., 2015, vol. 45, no. 8, p.731.

    Article  ADS  Google Scholar 

  38. Kucherik, A.O., Arakelian, S.M., Garnov, S.V., et al., Quantum Electron., 2016, vol. 46, no. 7, p. 627.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Arakelian.

Additional information

Original Russian Text © S.M. Arakelian, A.V. Osipov, I.O. Skryabin, K.S. Khorkov, A.V. Istratov, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2017, Vol. 81, No. 12, pp. 1587–1601.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arakelian, S.M., Osipov, A.V., Skryabin, I.O. et al. Electrophysics of nanocluster thin-film systems: Achieving superconducting topological states. Bull. Russ. Acad. Sci. Phys. 81, 1401–1413 (2017). https://doi.org/10.3103/S106287381712005X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106287381712005X

Navigation