Skip to main content
Log in

Laser-induced semiconductor nanocluster structures on the solid surface: new physical principles to construct the hybrid elements for photonics

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The laser synthesis technique for producing nanoparticles/nanoclusters of different topology for semiconductor samples (PbTe) is presented by two laser ablation methods: direct laser modification of thin films and laser evaporation of substance from the target in liquid (ethanol) to produce a colloidal system, and the subsequent laser deposition of the particles from colloid on solid substrate [under continuous wave (cw)-laser, λ = 1.06 μm, laser intensity—up to 106 W/cm2]. Electro-physical properties of the induced structures have been controlled by various induced topology. It is obtained that electroresistance can dramatically decrease due to spontaneous selected multichannel/parallel electron transportation trajectories in the inhomogeneous cluster system. Two conditions are principal for that: the characteristic cluster size a < ℓ, where ℓ is the inelastic length, and distance d between two neighboring clusters must be less than de Broglie wavelength λdB. So, the tunneling quantum effect takes place between correlated particles in two domains. Jump conductivity has also been detected under some experimental conditions for laser-induced cluster structures. The cluster shell model can be taken into account to explain the experimental results. For such laser-induced nanostructures we demonstrated the tendency of superconductivity to increase the electrical conductivity by several times (at room temperature) in our case as compared to the homogenous monolithic sample. The fact can be explained by analogy with the correlated particles/coupling pairs. Such approach is of great significance for constructing the elements and devices of optoelectronics and photonics in hybrid circuits on new physical principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abramov, D.V., Arakelyan, S.M., Galkin, A.F., Kvacheva, L.D., Klimovskii, I.I., Kononov, M.A., Mikhalitsyn, L.A., Kucherik, A.O., Prokoshev, V.G., Savranski˘i, V.V.: Melting of carbon heated by focused laser radiation in air at atmospheric pressure and temperature below 4000 K. JETP Lett. 84(5), 258–261 (2006). doi:10.1134/S0021364006170061

    Article  Google Scholar 

  • Abrikosov, A.A.: Principles of metal theory. FIZMATLIT, Moscow (2009)

    Google Scholar 

  • Antipov, A.A., Arakelyan, S.M., Emel’yanov, V.I., Zimin, S.P., Kutrovskaya, S.V., Kucherik, A.O., Prokoshev, V.G.: CW laser-induced formation of a nanoparticle ensemble with a bimodal size distribution on PbTe films. Quantum Electron. 41(8), 735–737 (2011a). doi:10.1070/QE2011v041n08ABEH014648

    Article  ADS  Google Scholar 

  • Antipov, A.A., Arakelyan, S.M., Emel’yanov, V.I., Zimin, S.P., Kutrovskaya, S.V., Kucherik, A.O., Prokoshev, V.G.: CW laser-induced generation of periodic ring structures on thin PbSe films. Quantum Electron. 41(5), 441–446 (2011b). doi:10.1070/QE2011v041n05ABEH014489

    Article  ADS  Google Scholar 

  • Antipov, A.A., Arakelyan, S.M., Vartanyan, T.A., Itina, T.E., Kutrovskaya, S.V., Kucherik, A.O., Sapegina, I.V.: Optical properties of nanostructured gold-silver films formed by deposition of small colloid drops. Opt. Spectrosc. 119(1), 119–123 (2015). doi:10.1134/S0030400X15070036

    Article  ADS  Google Scholar 

  • Arakelian, S., Bojlo, I., Belogolovskii, M.: Photonic and Electronic Excitations in Nonideal Superlattices, Part 2, Monograph. Ed. House. Lambert Academic Publishing, Saarbrucken (2013)

    Google Scholar 

  • Arakelian, S.M., Kucheruk, A.O., Prokoshev, V.G., Rau, V.G., Sergeev, A.G.: Introduction to Femto-Nanophotonics: Fundamentals and Laser Methods of Controlled Fabrication and Diagnostics of Nanostructured Materials. Logos Publisher, Moscow (2015)

    Google Scholar 

  • Bogolyubov, N.N.: Selected Works on Statistical Physics. Moscow University, Moscow (1979)

    Google Scholar 

  • Bogolyubov Jr., N.N., Sadovnikov, B.I.: Some Problems of Statistical Mechanics. Higher School, Moscow (1975)

    MATH  Google Scholar 

  • Dragunov, V.P., Neizvestny, I.G., Gridchin, V.A.: Fundamentals of Nanoelectronics. Logos Publisher, Moscow (2006)

    Google Scholar 

  • Drovosekov, A.B., Kreines, N.M., Savitsky, A.O., Kravtsov, E.A., Blagodatkov, D.V., Ryabukhina, M.V., Milyaev, M.A., Ustinov, V.V., Pashaev, E.M., Subbotin, I.A., Prutskov, G.V.: Interlayer coupling in Fe/Cr/Gd multilayer structures. JETP 120(6), 1041–1054 (2015). doi:10.1134/S1063776115060059

    Article  ADS  Google Scholar 

  • Dushenko, S., Koike, M., Ando, Y., Shinjo, T., Myronov, M., Shiraishi, M.: Experimental demonstration of room-temperature spin transport in n-type germanium epilayers. Phys. Rev. Lett. 114(19), 196602 (2015). doi:10.1103/PhysRevLett.114.196602

    Article  ADS  Google Scholar 

  • Halder, A., Liang, A., Kresin, V.V.: A novel feature in aluminum cluster photoionization spectra and possibility of electron pairing at T ~ 100 K. Nano Lett. 15(2), 1410–1413 (2015). doi:10.1021/nl5048175

    Article  ADS  Google Scholar 

  • Hu, J., Liu, X., Yue, C.L., Liu, J.Y., Zhu, H.W., He, J.B., Wei, J., Mao, Z.Q., Antipina, LYu., Popov, Z.I., Sorokin, P.B., Liu, T.J., Adams, P.W., Radmanesh, S.M.A., Spinu, L., Ji, H., Natelson, D.: Enhanced electron coherence in atomically thin Nb3SiTe6. Nat. Phys. 11, 471–476 (2015). doi:10.1038/nphys3321

    Article  Google Scholar 

  • Kagan, MYu., Mitskan, V.A., Korovushkin, M.M.: Kohn–Luttinger superconductivity in monolayer and bilayer semimetals with the Dirac spectrum. JETP 119(6), 1140–1149 (2014a). doi:10.1134/S1063776114120048

    Article  ADS  Google Scholar 

  • Kagan, MYu., Val’kov, V.V., Mitskan, V.A., Korovushkin, M.M.: The Kohn–Luttinger effect and anomalous pairing in new superconducting systems and graphene. JETP 118(6), 995–1011 (2014b). doi:10.1134/S1063776114060132

    Article  ADS  Google Scholar 

  • Kim, Y., Zhang, J., Rossi, E., Lutchyn, R.M.: Impurity-induced bound states in superconductors with spin–orbit coupling. Phys. Rev. Lett. 114(23), 236804 (2015). doi:10.1103/PhysRevLett.114.236804

    Article  ADS  Google Scholar 

  • Kvasnikov, I.A.: Introduction to the Theory of Conductivity and Superconductivity. Book House ‘Librokom’, Moscow (2010)

    Google Scholar 

  • Landau, L.D., Lifshits, E.M.: Theoretical Physics. V. 8, Electrodynamics of Condensed Matter, Ed. 2-e. Nauka, Moscow (1987)

    Google Scholar 

  • Mankowsky, R., Subedi, A., Forst, M., Mariager, S.O., Chollet, M., Lemke, H.T., Robinson, J.S., Glownia, J.M., Minitti, M., Frano, A., Fechner, M., Spaldin, N.A., Loew, T., Keimer, B., Georges, A., Cavalleri, A.: Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature (2014). doi:10.1038/nature13875

    Google Scholar 

  • Rontynen, J., Ojanen, T.: Topological superconductivity and high Chern numbers in 2D ferromagnetic Shiba lattices. Phys. Rev. Lett. 114(23), 236803 (2015). doi:10.1103/PhysRevLett.114.236803

    Article  ADS  Google Scholar 

  • Suslov, I.M.: Interpretation of high-dimensional numerical results for the Anderson transition. JETP 119(6), 1115–1122 (2014). doi:10.1134/S1063776114120188

    Article  ADS  Google Scholar 

  • Suslov, I.M.: Multi-fractality and quantum diffusion in the self-consistent theory of localization. JETP 148, 1012–1030 (2015). http://www.jetp.ac.ru/cgi-bin/e/index/r/148/5/p1012?a=list

  • Tarasov, M.A., Edelman, V.S.: Effect of a magnetic field impact on the conductivity of superconductor-insulator-normal metal tunnel junctions. JETP Lett. 101(11), 740–743 (2015). doi:10.1134/S0021364015110107

    Article  ADS  Google Scholar 

  • Tarasov, M.A., Edel’man, V.S., Mahashabde, S., Kuzmin, L.K.: Nonthermal optical response of superconductor-insulator-normal metal-insulator-superconductor tunnel structures. JETP 119(1), 107–114 (2014). doi:10.1134/S106377611406020X

    Article  ADS  Google Scholar 

  • Tatebayashi, J., Kako, S., Ho, J., Ota, Y., Iwamoto, S., Arakawa, Y.: Room-temperature lasing in a single nanowire with quantum dots. Nat. Photonics 9, 501–505 (2015). doi:10.1038/nphoton.2015.111

    Article  ADS  Google Scholar 

  • Vitukhnovsky, A.G., Lebedev, V.S., Selyukov, A.S., Vashchenko, A.A., Vasiliev, R.B., Sokolikova, M.S.: Electroluminescence from colloidal semiconductor CdSe nanoplates in hybrid organic inorganic light emitting diode. Chem. Phys. Lett. 619, 185–188 (2015). doi:10.1016/j.cplett.2014.12.00

    Article  ADS  Google Scholar 

  • Voronov, V.K., Podoplelov, A.V., Sagdeev, R.Z.: Physics at the Turn of the Millennium: The Physical Basis of Nanotechnology. Book House ‘Librokom’, Moscow (2011)

    Google Scholar 

  • Yen, F., Gao, T.: Dielectric anomaly in ice near 20 K: evidence of macroscopic quantum phenomena. J. Phys. Chem. Lett. 6, 2822–2825 (2015). doi:10.1021/acs.jpclett.5b00797

    Article  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the Russian Foundation for Basic Research, Project 13-02-97513, and the program authorized by the President Grants for Leading Scientific schools Nos. 89.2014.2 and MK-4321.2014.2, and it is a part of the project component of the state contract of Vladimir State University No. 16.440.2014/K to perform public works in the field of scientific activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arakelian.

Additional information

This article is part of the Topical Collection on Laser technologies and laser applications.

Guest Edited by José Figueiredo, José Rodrigues, Nikolai A. Sobolev, Paulo André and Rui Guerra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arakelian, S., Emel’yanov, V., Kutrovskaya, S. et al. Laser-induced semiconductor nanocluster structures on the solid surface: new physical principles to construct the hybrid elements for photonics. Opt Quant Electron 48, 342 (2016). https://doi.org/10.1007/s11082-016-0608-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0608-9

Keywords

Navigation