Skip to main content
Log in

Simulated and Experimental Study of Structure Formation upon Thermal Treatment of Steel 20Kh2G2SNMA

  • Published:
Steel in Translation Aims and scope

Abstract

Microstructure and mechanical properties of steel 20Kh2G2SNMA after thermal treatment were investigated. The treatment included cooling at different rates starting from the austenitization temperature. Decrease in the cooling rate 100 times was shown to decrease the strength of steel only slightly; impact elasticity in this case decreases 2.5 times due to formation of bainite. Kinetics of the isothermal bainite transformation and of the martensite formation during continuous cooling of the investigated steel was studied by dilatometry. Parameters of the Austin–Ricket equation, which describes the experimental dependence of the bainite fraction on the exposition time at different temperatures, were found. Coefficients of the Koistinen–Marburger equation, which describes formation of martensite upon cooling, were also defined. A mathematical model for evaluating the microstructure formation upon continuous cooling of steel 20Kh2G2SNMA was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Samoilovich, Yu.A., Strengthening railroad rails by isothermal quenching to lower bainite, Metallurgist, 2012, vol. 56, nos. 9–10, pp. 779–786. https://doi.org/10.1007/s11015-013-9650-z

    Article  CAS  Google Scholar 

  2. Maisuradze, M.V., Yudin, Yu.V., Kuklina, A.A., and Lebedev, D.I., Formation of microstructure and properties during isothermal treatment of aircraft building steel, Metallurgist, 2022, vol. 65, nos. 9–10, pp. 1008–1019. https://doi.org/10.1007/s11015-022-01241-1

    Article  CAS  Google Scholar 

  3. Meng, H., Hong, Zh., Li, Y., Jia, X., and Yin, Zh., Enhanced strength and ductility by introducing nanobainitic ferrite in bainitic steel used in sports equipment, Metals, 2007, vol. 11, no. 12, p. 2007. https://doi.org/10.3390/met11122007

    Article  CAS  Google Scholar 

  4. Buchmayr, B., Critical assessment 22: Bainitic forging steels, Mater. Sci. Technol., 2016, vol. 32, no. 6, pp. 517–522. https://doi.org/10.1080/02670836.2015.1114272

    Article  CAS  Google Scholar 

  5. Igwemezie, V.C. and Agu, P.C., Development of bainitic steels for engineering applications, Int. J. Eng. Res. Technol., 2014, vol. 3, no. 2, pp. 2698–2711.

    Google Scholar 

  6. Abbaszadeh, Kh., Saghafian, H., and Kheirandish, Sh., Effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC steel, J. Mater. Sci. Technol., 2012, vol. 28, no. 4, pp. 336–342. https://doi.org/10.1016/S1005-0302(12)60065-6

    Article  CAS  Google Scholar 

  7. Yang, M., Sousa, B., Smith, R., Sabarou, H., Cote, D., Zhong, Yu, and Sisson, R., Bainite percentage determination and effect of bainite percentage on mechanical properties in austempered AISI 5160 steel, Mater. Perform. Charact., 2021, vol. 10, no. 1, pp. 110–125. https://doi.org/10.1520/MPC20200068

    Article  Google Scholar 

  8. Han, X., Zhang, Z., Rong, Y., Thrush, S.J., Barber, G.C., Yang, H., and Qiu, F., Bainite kinetic transformation of austempered AISI 6150 steel, J. Mater. Res. Technol., 2020, vol. 9, no. 2, pp. 1357–1364. https://doi.org/10.1016/j.jmrt.2019.11.062

    Article  CAS  Google Scholar 

  9. Wei, Z., Hu, H., Liu, M., Tian, J., and Xu, G., Effect of austempering below and above Ms on the microstructure and wear performance of a low-carbon bainitic steel, Metals, 2022, vol. 12, no. 1, p. 104. https://doi.org/10.3390/met12010104

    Article  CAS  Google Scholar 

  10. Maisuradze, M.V., Yudin, Yu.V., and Kuklina, A.A., Increase in impact strength during bainite structure formation in HY-TUF high-strength steel, Metallurgist, 2019, vol. 63, nos. 7–8, pp. 849–858. https://doi.org/10.1007/s11015-019-00899-4

    Article  CAS  Google Scholar 

  11. Tu, M.-Yi., Hsu, Ch.-A., Wang, W.-H., and Hsu, Yu.-F., Comparison of microstructure and mechanical behavior of lower bainite and tempered martensite in JIS SK5 steel, Mater. Chem. Phys., 2008, vol. 107, nos. 2–3, pp. 418–425. https://doi.org/10.1016/j.matchemphys.2007.08.017

    Article  CAS  Google Scholar 

  12. Maisuradze, M.V., Kuklina, A.A., Lebedev, D.I., Ryzhkov, M.A., and Makarov, D.A., Microstructure and mechanical properties of aircraft steel 30Kh2GSN2VM, Met. Sci. Heat Treat., 2022, vol. 64, nos. 7–8, pp. 465–473. https://doi.org/10.1007/s11041-022-00832-8

    Article  CAS  Google Scholar 

  13. Härtel, M., Wilke, A., Dieck, S., Landgraf, P., Grund, T., Lampke, T., Neukirchner, H., Halle, T., and Wappler, S., On the Q&P potential of a commercial spring steel, Metals, 2021, vol. 11, no. 10, p. 1612. https://doi.org/10.3390/met11101612

    Article  CAS  Google Scholar 

  14. Maisuradze, M.V., Yudin, Yu.V., and Lebedev, D.I., Thermal strengthening of large parts made from high-strength sparingly doped steel in air, Steel Transl., 2020, vol. 50, no. 5, pp. 356–362. https://doi.org/10.3103/S0967091220050083

    Article  Google Scholar 

  15. Rodrigues, P.C.M., Pereloma, E.V., and Santos, D.B., Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling, Mater. Sci. Eng., A, 2000, vol. 283, nos. 1–2, pp. 136–143. https://doi.org/10.1016/S0921-5093(99)00795-9

    Article  Google Scholar 

  16. Gramlich, A., Schmiedl, T., Schönborn, S., Melz, T., and Bleck, W., Development of air-hardening martensitic forging steels, Mater. Sci. Eng., A, vol. 784, pp. 139–321. https://doi.org/10.1016/j.msea.2020.139321

  17. Diekmann, U., Säuberlich, T., and Frehn, A., Air-hardening, high-strength steels for more crash safety, ATZ Worldwide, 2007, vol. 109, pp. 6–8. https://doi.org/10.1007/BF03224970

    Article  Google Scholar 

  18. Fang, H.S., Li, Q., Bai, B.Zh., Yang, Zh.G., Liu, D.Yu, and Yang, F.B., The developing prospect of air-cooled bainitic steels, Mater. Sci. Forum, 2003, vols. 426–432, pp. 201–208. https://doi.org/10.4028/www.scientific.net/MSF.426-432.201

  19. Schaper, M., Grydin, O., and Nürnberger, F., Microstructure evolution of the air-hardening steel LH800® due to heat treatment, HTM J. Heat Treat. Mater., 2013, vol. 68, no. 1, pp. 42–48. https://doi.org/10.3139/105.110174

    Article  CAS  Google Scholar 

  20. Brunelli, K., Bassani, P., Lecis, N., Peruzzo, L., Maranzana, C., and Dabalà, Microstructural evolution of a continuously cooled air hardening steel, Metallogr., Microstructure, Anal., 2013, vol. 2, pp. 56–66. https://doi.org/10.1007/s13632-013-0062-z

    Article  CAS  Google Scholar 

  21. Kleiner, L.M., Larinin, D.M., Spivak, L.V., and Shatsov, A.A., Phase and structural transformations in low-carbon martensitic steels, Phys. Met. Metallogr., 2009, vol. 108, no. 2, pp. 153–160. https://doi.org/10.1134/S0031918X09080080

    Article  Google Scholar 

  22. Kozvonin, V.A., Shatsov, A.A., Ryaposov, I.V., Zakirova, M.G., and Generalova, K.N., Structure, phase transformations, mechanical characteristics, and cold resistance of low-carbon martensitic steels, Phys. Met. Metallogr., 2016, vol. 117, no. 9, pp. 834–842. https://doi.org/10.1134/S0031918X16080081

    Article  CAS  Google Scholar 

  23. Kleiner, L.M., Shatsov, A.A., and Larinin, D.M., Low-carbon martensitic steels. Alloying and properties, Met. Sci. Heat Treat., 2011, vol. 52, nos. 11–12, pp. 540–544. https://doi.org/10.1007/s11041-011-9316-z

    Article  CAS  Google Scholar 

  24. Yurchenko, A.N., Simonov, Yu.N., Panov, D.O., and Zhitenev, A.I., Transformations, structure and properties of steel 22Kh2G2S2MF under continuous cooling, Met. Sci. Heat Treat., 2020, vol. 61, nos. 9–10, pp. 617–621. https://doi.org/10.1007/s11041-020-00469-5

    Article  CAS  Google Scholar 

  25. Doane, D.V., Softening high hardenability steels for machining and cold forming, J. Heat Treat., 1988, vol. 6, pp. 97–109. https://doi.org/10.1007/BF02833110

    Article  CAS  Google Scholar 

  26. Maisuradze, M.V., Yudin, Yu.V., and Kuklina, A.A., Formation of microstructure in advanced low-carbon steel of martensitic class under heat treatment, Met. Sci. Heat Treat., 2021, vol. 62, nos. 9–10, pp. 550–556. https://doi.org/10.1007/s11041-021-00601-z

    Article  CAS  Google Scholar 

  27. Austin, J.B. and Rickett, R.L., Kinetics of the decomposition of austenite at constant temperature, Trans. Am. Inst. Min. Metall. Eng., 1939, vol. 964, pp. 1–20.

    Google Scholar 

  28. Starink, M.J., Kinetic equations for diffusion-controlled precipitation reactions, J. Mater. Sci., 1997, vol. 32, no. 15, pp. 4061–4070. https://doi.org/10.1023/A:1018649823542

    Article  CAS  Google Scholar 

  29. Maisuradze, M.V., Ryzhkov, M.A., Yudin, Yu.V., and Kuklina, A.A., Transformations of supercooled austenite in a promising high-strength steel grade under continuous cooling conditions, Met. Sci. Heat Treat., 2017, vol. 59, nos. 7–8, pp. 486–490. https://doi.org/10.1007/s11041-017-0176-z

    Article  CAS  Google Scholar 

  30. Kop, T.A., Sietsma, J., and Van Der Zwaag, S., Dilatometric analysis of phase transformations in hypo-eutectoid steels, J. Mater. Sci., 2001, vol. 36, no. 2, pp. 519–526. https://doi.org/10.1023/A:1004805402404

    Article  CAS  Google Scholar 

  31. Caballero, F.G., Capdevila, C., and García De Andrés, C., Modelling of kinetics and dilatometric behaviour of austenite formation in a low-carbon steel with a ferrite plus pearlite initial microstructure, J. Mater. Sci., 2002, vol. 37, no. 16, pp. 3533–3540. https://doi.org/10.1023/A:1016579510723

    Article  CAS  Google Scholar 

  32. Maisuradze, M.V., Yudin, Yu.V., Kuklina, A.A., and Lebedev, D.I., Effect of heat treatment on mechanical properties and microstructure of advanced high-strength steel, Met. Sci. Heat Treat., 2023. https://doi.org/10.1007/s11041-023-00845-x

  33. Koistinen, D.P. and Marburger, R.E., A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metall., 1959, vol. 7, no. 1, pp. 59–60. https://doi.org/10.1016/0001-6160(59)90170-1

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 22-29-00106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Maisuradze.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Efimov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maisuradze, M.V., Kuklina, A.A., Lebedev, D.I. et al. Simulated and Experimental Study of Structure Formation upon Thermal Treatment of Steel 20Kh2G2SNMA. Steel Transl. 53, 176–184 (2023). https://doi.org/10.3103/S0967091223020122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091223020122

Keywords:

Navigation