Skip to main content
Log in

Transformations of Supercooled Austenite in a Promising High-Strength Steel Grade Under Continuous Cooling Conditions

  • Published:
Metal Science and Heat Treatment Aims and scope

Special features of the transformations of supercooled austenite occurring under continuous cooling of a promising high-strength steel grade not standardized in the Russian Federation are determined. A method for evaluating the volume fractions of structure constituents formed in the steel as a result of cooling from 925°C at various constant rates within 0.025 – 75 K/sec is proposed and tested. The results are generalized in the form of a thermokinetic diagram of transformations of supercooled austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. V. M. Farber, O. V. Selivanova, A. B. Arabey, et al., “Effect of heat treatment on mechanical properties of steels of strength class K65 (X80),” Met. Sci. Heat Treat., 56, 454 – 456 (2014); DOI https://doi.org/10.1007/s11041-014-9781-2.

    Article  Google Scholar 

  2. A. A. Popov, A. G. Illarionov, S. I. Stepanov, et al., “Effect of quenching temperature on structure and properties of titanium alloy: Structure and phase composition,” Phys. Met. Metallogr., 115, 507 – 516 (2014); DOI https://doi.org/10.1134/S0031918X14050068.

    Article  Google Scholar 

  3. A. Kumar, A. Sharma, and S. K. Goel, “Effect of heat treatment on microstructure, mechanical properties and erosion resistance of cast 23-8-N nitronic steel,” Mater. Sci. Eng. A, 637, 56 – 62 (2015); DOI https://doi.org/10.1016/j.msea.2015.04.031.

    Article  Google Scholar 

  4. M. V. Maisuradze, M. A. Ryzhkov, Yu. V. Yudin, et al., “Heat treatment technology for high-strength engineering steel variable cross-section components,” Metallurgist, 58, 712 – 716 (2014); DOI https://doi.org/10.1007/s11015-014-9982-3.

    Article  Google Scholar 

  5. M. A. Ryzhkov, I. N. Veselov, I. Yu. Pyshmintsev, et al., “Pilot production of casing tubes from 20Kh1MFA steel resistant to media containing hydrogen sulfide,” Metallurgist, 52, 238 – 243 (2008); DOI https://doi.org/10.1007/s11015-008-9039-6.

    Article  Google Scholar 

  6. I. N. Ashikhmina, A. I. Stepanov, S. V. Belikov, et al., “Optimizing the heat treatment of steel of 20X1MFA type,” Steel in Transl., 38, 407 – 410 (2008); DOI: https://doi.org/10.3103/s096709120805015X.

    Article  Google Scholar 

  7. J. Hu, W. Cao, C. Wang, et al., “Phase transformation behavior of cold rolled 0.1C – 5Mn steel during heating process studied by differential scanning calorimetry,” Mater. Sci. Eng. A, 636, 108 – 116 (2015); DOI https://doi.org/10.1016/j.msea.2015.03.080.

    Article  Google Scholar 

  8. K. N. Vdovin, K. G. Pivovarova, and M. A. Lisovskaya, “The use of thermal analysis to study the structure and properties of roll steels,” Met. Sci. Heat Treat., 56, 302 – 305 (2014); DOI: https://doi.org/10.1007/s11041-014-9750-9.

    Article  Google Scholar 

  9. F. Hahnenberger, M. Smaga, and D. Eifler, “Microstructural investigation of the fatigue behavior and phase transformation in metastable austenitic steels at ambient and lower temperatures,” Int. J. Fatigue, 69, 36 – 48 (2014); DOI: https://doi.org/10.1016/j.ijfatigue.2012.07.004.

    Article  Google Scholar 

  10. M. A. Ryzhkov and A. A. Popov, “Methodological aspects of plotting thermokinetic diagrams of transformation of supercooled austenite in low-alloy steels,” Met. Sci. Heat Treat., 52, 612 – 616 (2011); DOI: https://doi.org/10.1007/s11041-011-9329-7.

    Google Scholar 

  11. A. N. Makovetskii, T. I. Tabachnikova, I. L. Yakovleva, et al., “Dilatometry investigation of austenite dissociation for low-alloyed pipe steel on cooling from intercritical temperature range,” Phys. Met. Metallogr., 113, 982 – 991 (2012); DOI: https://doi.org/10.1134/s0031918X12100067.

    Article  Google Scholar 

  12. S. H. M. Azghandi, V. G. Ahmadabadi, I. Raoofian, et al., “Investigation on decomposition behavior of austenite under continuous cooling in vanadium microalloyed steel (30MSV6),” Mater. Des., 88, 751 – 758 (2015); DOI: https://doi.org/10.1016/j.matdes.2015.09.046.

    Article  Google Scholar 

  13. T. A. Kop, J. Sietsma, and S. Van Der Zwaag, “Dilatometric analysis of phase transformations in hypo-eutectoid steels,” J. Mater. Sci., 36, 519 – 526 (2001); DOI: https://doi.org/10.1023/A:1004805402404.

    Article  Google Scholar 

  14. M. V. Maisuradze, Yu. V. Yudin, and M. A. Ryzhkov, “Numerical simulation of pearlitic transformation in steel 45Kh5MF,” Met. Sci. Heat Treat., 56, 512 – 516 (2015); DOI: https://doi.org/10.1007/s11041-015-9791-8.

    Article  Google Scholar 

  15. P. V. Romanov and V. P. Radchenko, “Transformation of austenite during continuous cooling of steel,” in: Atlas of Thermokinetic Diagrams, Part I [in Russian], Sib. Otd. AN SSSR, Novosibirsk (1960), 51 p.

  16. L. E. Popova and A. A. Popov, Diagrams of Austenite Transformation in Steels and Beta-Solution in Titanium Alloys [in Russian], Metallurgiya, Moscow (1991), 503 p.

  17. K. Abbaszadeh, H. Sagha, and Sh. Kheirandish, “Effect of bainite morphology on mechanical properties of the mixed bainitemartensite microstructure in D6AC steel,” J. Mater. Sci. Technol., 28(4), 336 – 342 (2012); DOI: https://doi.org/10.1016/s1005-0302(12)60065-6.

    Article  Google Scholar 

  18. L. M. Utevskii, Electron Diffraction Microscopy in Metallography [in Russian], Metallurgiya, Moscow (2001), 672 p.

  19. A. S. Zubchenko, Index of Steels and Alloys [in Russian], Mashinostroenie, Moscow (2001).

    Google Scholar 

  20. C. R. N. Nunura, C. A. dos Santos, and J. A. Spim, “Numerical–experimental correlation of microstructures, cooling rates and mechanical properties of AISI 1045 steel during the Jominy end-quench test,” Mater. Des., 76, 230 – 244 (2015); DOI: https://doi.org/10.1016/j.matdes.2015.03.031.

    Article  Google Scholar 

  21. G. E. Totten, Steel Heat Treatment, Metallurgy and Technologies, CRC Press, Boca Raton (2007), 834 p.

  22. L. Huiping, Z. Guoqun, N. Shanting, et al., “FEM simulation of quenching process and experimental verification of simulation result,” Mater. Sci. Eng. A, 452 – 453, 705 – 714 (2007); DOI: https://doi.org/10.1016/j.msea.2006.11.023.

    Article  Google Scholar 

  23. J. C. Ion, K. E. Easterling, and M. F. Ashby, “Second report on diagrams of microstructure and hardness for heat-affected zones in welds,” Acta Metall., 32(11), 1949 – 1962 (1984).

    Article  Google Scholar 

  24. M. A. Ryzhkov, M. V. Maisuradze, Yu. V. Yudin, et al., “Experience in improving silicon steel component heat treatment quality,” Metallurgist, 59, 401 – 405 (2015); DOI: https://doi.org/10.1007/s11015-015-0117-2.

    Article  Google Scholar 

Download references

This work was supported by the Ministry of Education and Science of the Russian Federation (Agreement No. 02.A03.21.0006) in the framework of investigations according to Governmental Order No. 211 (Project No. 11.1465.2014/K) and by the Program of Grants of the President of Russian Federation for Young Cand. Sci. Scientists (Project No. MK-7929.2016.8).

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 15 – 19, August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maisuradze, M.V., Ryzhkov, M.A., Yudin, Y.V. et al. Transformations of Supercooled Austenite in a Promising High-Strength Steel Grade Under Continuous Cooling Conditions. Met Sci Heat Treat 59, 486–490 (2017). https://doi.org/10.1007/s11041-017-0176-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-017-0176-z

Key words

Navigation