Skip to main content
Log in

Bactericidal Efficacy of New Types of Magnesium Hydroxide and Calcium Carbonate Nanoparticles

  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Objectives of the present study were to evaluate the antibacterial activity of the two types of inorganic magnesium hydroxide [Mg(OH)2] and calcium carbonate [CaCO3] nanoparticles (NPs) on the growth of three Gram-negative bacteria, e.g., Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens and three Gram-positive bacteria, e.g., Streptococcus pyogenes, Staphylococcus aureus and Streptococcus bovis. The synthesis of these NPs was done by a microwave hydrothermal method. The structures and sizes of synthesized nanoparticles were investigated using X-ray diffractometer. Antimicrobial susceptibility of different NPs was determined at 20, 50 and 100 mg/mL by the agar-well diffusion method, growth reduction at the aqueous solution and time-kill assay. The antimicrobial effects across NPs and bacterial species were shown to be dose-dependent. The results of the different experiments indicated that smaller NP sizes have higher antibacterial effects. M29 [Mg(OH)2-29] nanoparticles followed by silver (Ag) and C1 (CaCO3-1) showed the highest influence on bacterial growth rates, while similar ability to kill bacteria across treatment time. In addition, Gram-negative bacteria were more affected in terms of the inhibition zone and reduction of growth rates after 24 h as well as in terms of the prolonged treatment of NPs up to 36 h due to the influence of different nanoparticles. We recommend to search the chance of further using M29 and C1 in medicine and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ataee, R.A., Derakhshanpour, J., Mehrabi Tavana, A., and Eydi, A., Antibacterial effect of calcium carbonate nanoparticles on Agrobacterium tumefaciens,Iran. J. Mil. Med., 2011, vol. 13, pp. 65–70.

    Google Scholar 

  2. Creighton, J.A., Blatchford, C.G., and Albrecht, M.G., Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength, J. Chem. Soc., Faraday Trans. 2, 1979, vol. 75, pp. 790–798.

    Article  CAS  Google Scholar 

  3. Di, D.R., He, Z.Z., Sun, Z.Q., and Liu, J., A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles, Nanomedicine, 2012, vol. 8, pp. 1233–1241.

    Article  CAS  Google Scholar 

  4. Dizaj, S.M., Barzegar-Jalali, M., Zarrintan, M.H., Adibkia, K., and Lotfipour, F., Calcium carbonate nanoparticles; potential in bone and tooth disorders, Pharm. Sci., 2015, vol. 20, pp. 175–182.

    Google Scholar 

  5. Dong, C., Cairney, J., Sun, Q., Maddan, O.L., He, G., and Deng, Y., Investigation of Mg(OH)2 nanoparticles as an antibacterial agent, J. Nanopart. Res., 2010, vol. 12, pp. 2101–2109.

    Article  CAS  Google Scholar 

  6. Dong, C., He, G., Li, H., Zhao, R., Han, Y., et al., Antifouling enhancement of poly (vinylidene fluoride) microfiltration membrane by adding Mg(OH)2 nanoparticles, J. Membr. Sci., 2012, vols. 387–388, pp. 40–47.

    Article  Google Scholar 

  7. Dong, C., He, G., Zheng, W., Bian, T., Li, M., et al., Study on antibacterial mechanism of Mg(OH)2 nanoparticles, Mater. Lett., 2014, vol. 134, pp. 286–289.

    Article  CAS  Google Scholar 

  8. Dong, C., Song, D., Cairney, J., Maddan, O.L., He, G., et al., Antibacterial study of Mg(OH)2 nanoparticles, Mater. Res. Bull., 2011, vol. 46, pp. 576–582.

    Article  CAS  Google Scholar 

  9. Fang, M., Chen, J.H., Xu, X.L., Yang, P.H., and Hildebrand, H.F., Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests, Int. J. Antimicrob. Agents, 2006, vol. 27, pp. 513–517.

    Article  CAS  Google Scholar 

  10. Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., and Kim, J.O., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res., Part A, 2000, vol. 52, no. 4, pp. 662–668.

    Article  CAS  Google Scholar 

  11. Greulich, C., Kittler, S., Epple, M., Muhr, G., and Koller, M., Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs), Langenbecks Arch. Surg., 2009, vol. 394, pp. 495–502.

    Article  CAS  Google Scholar 

  12. Jeon, H.J., Yi, S.C., and Oh, S.G., Preparation and antibacterial effects of Ag-SiO2 thin films by sol–gel method, Biomaterials, 2003, vol. 24, pp. 4921–4928.

    Article  CAS  Google Scholar 

  13. Jiao, C.M., Wang, Z.Z., Ye, Z., Hu, Y., and Fan, W.C., Flame retardation of ethylene-vinyl acetate copolymer using nano magnesium hydroxide and nano hydrotalcite, J. Fire Sci., 2006, vol. 24, pp. 47–64.

    Article  CAS  Google Scholar 

  14. Jung, W.K., Koo, H.C., Kim, K.W., Sook, S., Kim, S.H., and Park, Y.H., Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli,Appl. Environ. Microbiol., 2008, vol. 74, pp. 2171–2178.

    Article  CAS  Google Scholar 

  15. Kim, J.S., Kuk, E., Yu, K.N., Kim, J.-H., Park, S.J., et al., Antimicrobial effects of silver nanoparticles, Nanomed.: Nanotechnol., Biol. Med., 2007, vol. 3, pp. 95–101.

    Article  CAS  Google Scholar 

  16. Kumar, A., Vemula, P.K., Ajayan, P.M., and John, G., Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil, Nat. Mater., 2008, vol. 7, pp. 236–241.

    Article  CAS  Google Scholar 

  17. Kvitek, L., Vanickova, M., Panacek, A., et al., Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum, J. Phys. Chem., 2009, vol. 113, pp. 4296–4300.

    CAS  Google Scholar 

  18. Liu, X.F., Yang, D.Z., Guan, Y.L., Li, Z., and Yao, K.D., Antibacterial action of chitosan and carboxymethylated chitosan, J. Appl. Polym. Sci., 2001, vol. 79, pp. 1324–1335.

    Article  CAS  Google Scholar 

  19. Makhluf, S., Dror, R., Nitzan, Y., Abramovich, Y., Jelinek, R., and Gedanken, A., Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide, Adv. Funct. Mater., 2005, vol. 15, pp. 1708–1715.

    Article  CAS  Google Scholar 

  20. Mendonca, A.F., Amoroso, T.L., and Knabel, S.J., Destruction of gram-negative food-borne pathogens by high pH involves disruption of the cytoplasmic membrane, Appl. Environ. Microbiol., 1994, vol. 60, pp. 4009–4014.

    Article  CAS  Google Scholar 

  21. Nel, A., Xia, T., Madler, L., and Li, N., Toxic potential of materials at the nanolevel, Science, 2006, vol. 311, pp. 622–627.

    Article  CAS  Google Scholar 

  22. Pal, S., Tak, Y.K., and Song, J.M., Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticles? A study of the gram-negative bacterium Escherichia coli,Appl. Environ. Microbiol., 2007, vol. 73, pp. 1712–1720.

    Article  CAS  Google Scholar 

  23. Pan, X., Wang, Y., Chen, Z., Pan, D., Cheng, Y., et al., Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2, ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 1137–1142.

    Article  CAS  Google Scholar 

  24. Perez, C., Pauli, M., and Bazerque, P., An antibiotic assay by the agar well diffusion method, Acta Biol. Med. Exp., 1990, vol. 15, pp. 113–115.

    Google Scholar 

  25. Raghupati, R.K., Koodali, R.T., and Manna, A.C., Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles, Langmuir, 2011, vol. 27, pp. 4020–4028.

    Article  Google Scholar 

  26. Rai, M., Yadav, A., and Gade, A., Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv., 2009, vol. 27, pp. 76–83.

    Article  CAS  Google Scholar 

  27. Sawai, J., Kojima, H., Igarashi, H., Hashimoto, A., Shoji, S., et al., Antibacterial characteristics of magnesium oxide powder, World J. Microbiol. Biotechnol., 2000, vol. 16, pp. 187–194.

    Article  CAS  Google Scholar 

  28. Stoimenov, P.K., Klinger, R.L., Marchin, G.L., and Klabunde, K.J., Metal oxide nanoparticles as bactericidal agents, Langmuir, 2002, vol. 18, pp. 6679–6686.

    Article  CAS  Google Scholar 

  29. Suh, J.S., DiLella, D.P., and Moskovits, M., Surface-enhanced Raman spectroscopy of colloidal metal systems: a two-dimensional phase equilibrium in p-aminobenzoic acid adsorbed on silver, J. Phys. Chem., 1983, vol. 87, pp. 1540–1544.

    Article  CAS  Google Scholar 

  30. Tang, Z.-X. and Lv, B.-F., MgO nanoparticles as antibacterial agent: Preparation and activity, Braz. J. Chem. Eng., 2014, vol. 31, pp. 591–601.

    Article  Google Scholar 

  31. Wang, X.J., Qiao, X.L., Chen, J.G., Wang, H.S., and Ding, S.Y., Advancement in research on inorganic antibacterial material, J. Ceram., 2003, vol. 24, pp. 39–44.

    CAS  Google Scholar 

  32. Yoshinari, M., Oda, Y., Kato, T., and Okuda, K., Influence of surface modifications to titanium on antibacterial activity in vitro, Biomaterials, 2001, vol. 22, pp. 2043–2048.

    Article  CAS  Google Scholar 

  33. Yu, J.C., Ho, W.K., Lin, J., Yip, H., and Wong, P.K., Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate, Environ. Sci. Technol., 2003, vol. 37, pp. 2296–2301.

    Article  CAS  Google Scholar 

  34. Zhang, L.L., Jiang, Y.H., Ding, Y.L., Povey, M., and York, D., Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nanofluids), J. Nanopart. Res., 2007, vol. 9, pp. 479–489.

    Article  Google Scholar 

  35. Zhao, Y.K., Sung, W.P., Tsai, T.T., and Wang, H.J., Application of nanoscale silver-doped titanium dioxide as photocatalyst for indoor airborne bacteria control: A feasibility study in medical nursing institutions, J. Air Waste Manage. Assoc., 2010, vol. 60, pp. 337–345.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Edris.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanaa G. Al Attas, Faten Al-Hazmi, Alwafi, R. et al. Bactericidal Efficacy of New Types of Magnesium Hydroxide and Calcium Carbonate Nanoparticles. Mol. Genet. Microbiol. Virol. 34, 252–262 (2019). https://doi.org/10.3103/S0891416819040086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416819040086

Navigation