Skip to main content
Log in

Polymorphism of Pinb-1 Gene Length in Aegilops biuncialis Vis.

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Puroindolines (puroindoline a and puroindoline b) determine the texture of the wheat grain, which affects milling properties of the grain and water absorption properties of the flour. The level of common wheat hardness is controlled by the allelic composition at the Ha locus on the short arm of chromosome 5D, which contains the closely linked Pina-D1 and Pinb-D1 genes. Aegilops species can be a source of novel variants of puroindoline genes for enriching the wheat gene pool. Among them is the tetraploid species Ae. biuncialis Vis. (UUMM). In our study, the polymorphism of puroindoline gene length was analyzed in Ae. biuncialis using PCR amplification with gene-specific primers. We analyzed a collection of Ae. biuncialis accessions originating from the Crimean Peninsula. Polymorphism with respect to the number of amplicons produced with gene-specific primers to the puroindoline b gene was revealed: there were one (about 520 bp) or two amplification products (about 520 and 500 bp). The frequency of accessions with two amplicons in the collection was 12.5%. Samples with two amplicons were found in the eastern and southern parts of the area of the species on the Crimean Peninsula. Probably, in the Ae. biuncialis accessions with two amplicons, the fragment of about 520 bp corresponds to the Pinb-U1 gene; the 500-bp fragment, to the Pinb-M1 gene, and this allele may be similar to the rare Pinb-M1-III allele of Ae. comosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Chantret, N., Salse, J., Sabot, F., et al., Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops), Plant Cell, 2005, vol. 17, no. 4, pp. 1033–1045. https://doi.org/10.1105/tpc.104.029181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, M., Wilkinson, M., Tosi, P., et al., Novel puroindoline and grain softness protein alleles in Aegilops species with the C, D, S, M and U genomes, Theor. Appl. Ge-net., 2005, vol. 111, no. 6, pp. 1159–1166. https://doi.org/10.1007/s00122-005-0047-7

    Article  CAS  Google Scholar 

  3. Cuesta, S., Guzmán, C., and Alvarez, J.B., Allelic diversity and molecular characterization of puroindoline genes in five diploid species of the Aegilops genus, J. Exp. Bot., 2013, vol. 64, no. 16, pp. 5133–5143. https://doi.org/10.1093/jxb/ert299

    Article  CAS  PubMed  Google Scholar 

  4. Dulai, S., Molnár, I., Szopkó, D., et al., Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress, J. Plant Physiol., 2014, vol. 171, pp. 509–517. https://doi.org/10.1016/j.jplph.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  5. Farkas, A., Molnár, I., Dulai, S., et al., Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat – Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH, Genome, 2014, vol. 57, pp. 61–67. https://doi.org/10.1139/gen-2013-0204

    Article  CAS  PubMed  Google Scholar 

  6. Gautier, M.F., Aleman, M.E., Guirao, A., et al., Triticum aestivum puroindolines, two basic cysteine-rich seed proteins: cDNA sequence analysis and developmental gene expression, Plant Mol. Biol., 1994, vol. 25, pp. 43–57. https://doi.org/10.1007/BF00024197

    Article  CAS  PubMed  Google Scholar 

  7. Ivanizs, L., Marcotuli, I., Rakszegi, M., et al., Identification of new QTLs for dietary fiber content in Aegilops biuncialis, Int. J. Mol. Sci., 2022, vol. 23, no. 7, p. 3821. https://doi.org/10.3390/ijms23073821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kozub, N.A., Sozinov, I.A., Xynias, I.N., et al., Allelic variation at high-molecular-weight glutenin subunit loci in Aegilops biuncialis Vis., Russ. J. Genet., 2011, vol. 47, no. 9, pp. 1078–1083. https://doi.org/10.1134/S1022795411090092

    Article  CAS  Google Scholar 

  9. Kozub, N.A., Sozinov, I.A., and Sozinov, A.A., Identification of alleles at the gliadin loci Gli-U1 and Gli-Mb1 in Aegilops biuncialis Vis., Russ. J. Genet., 2012, vol. 48, no. 4, pp. 390–395. https://doi.org/10.1134/S1022795412030052

    Article  CAS  Google Scholar 

  10. Kumar, S., Stecher, G., Li, M., et al., MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kumar, A., Kapoor, P., Chunduri, V., et al., Potential of Aegilops sp. for improvement of grain processing and nutritional quality in wheat (Triticum aestivum), Front. Plant Sci., 2019, vol. 10, p. 308. https://doi.org/10.3389/fpls.2019.00308

    Article  PubMed  PubMed Central  Google Scholar 

  12. Massa, A. and Morris, C.F., Molecular evolution of the puroindoline-a, puroindoline-b, and grain softness protein-1 genes in the tribe Triticeae, J. Mol. Evol., 2006, vol. 63, no. 4, pp. 526–536. https://doi.org/10.1093/molbev/msp076

    Article  CAS  PubMed  Google Scholar 

  13. Massa, A., Morris, C.F., and Gill, B.S., Sequence diversity of Puroindoline-a, Puroindoline-b, and the grain softness protein genes in Aegilops tauschii Coss, Crop Sci., 2004, vol. 44, no. 5, pp. 1808–1816. https://doi.org/10.2135/cropsci2004.1808

    Article  CAS  Google Scholar 

  14. Molnár, I., Gaspar, L., Savari, E., et al., Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought, Funct. Plant Biol., 2004, vol. 31, pp. 1149–1159. https://doi.org/10.1071/FP03143

    Article  PubMed  Google Scholar 

  15. Monte, J.V., De Nova, P.J.G., and Soler, C., AFLP-based analysis to study genetic variability and relationships in the Spanish species of the genus Aegilops, Hereditas, 2001, vol. 135, pp. 233–238. https://doi.org/10.1111/j.1601-5223.2001.00233.x

    Article  CAS  PubMed  Google Scholar 

  16. Morris, C.F., The antimicrobial properties of the puroindolines, a review, World J. Microbiol. Biotechnol., 2019, vol. 35, no. 6, p. 86. https://doi.org/10.1007/s11274-019-2655-4

    Article  CAS  PubMed  Google Scholar 

  17. Morris, C.F., Puroindolines: the molecular genetic basis of wheat grain hardness, Plant Mol. Biol., 2002, vol. 48, nos. 5–6, pp. 633–647. https://doi.org/10.1023/a:1014837431178

    Article  CAS  PubMed  Google Scholar 

  18. Morris, C.F., Luna, J., and Caffe-Treml, M., The Vromindolines of cv. Hayden oat (Avena sativa L.) – A review of the Poeae and Triticeae indolines and a suggested system for harmonization of nomenclature, J. Cereal Sci., 2021, vol. 97, p. 103135. https://doi.org/10.1016/j.jcs.2020.103135

    Article  CAS  Google Scholar 

  19. Okada, M., Ikeda, T.M., Yoshida, K., et al., Effect of the U genome on grain hardness in nascent synthetic hexaploids derived from interspecific hybrids between durum wheat and Aegilops umbellulata, J. Cereal Sci., 2018, vol. 83, pp. 153–161. https://doi.org/10.1016/j.jcs.2018.08.011

    Article  CAS  Google Scholar 

  20. Okada, M., Michikawa, A., Yoshida, K., et al., Phenotypic effects of the U-genome variation in nascent synthetic hexaploids derived from interspecific crosses between durum wheat and its diploid relative Aegilops umbellulata, PLoS One, 2020, vol. 15, no. 4, p. 0231129. https://doi.org/10.1371/journal.pone.0231129

    Article  CAS  Google Scholar 

  21. Okuno, K., Ebana, K., Noov, B., et al., Genetic diversity and Central Asian and north Caucasian Aegilops species as revealed by RAPD markers, Genet. Res. Crop. Evol., 1998, vol. 45, pp. 389–394. https://doi.org/10.1023/A:1008660001263

    Article  Google Scholar 

  22. Pauly, A., Pareyt, B., Fierens, E., et al., Wheat (Triticum aestivum L. and T. turgidum L. ssp. durum) kernel hardness: I. Current view on the role of puroindolines and polar lipids, Compr. Rev. Food Sci. Food Saf., 2013, vol. 12, pp. 413–426. https://doi.org/10.1111/1541-4337.12018

    Article  CAS  PubMed  Google Scholar 

  23. Rabokon, A., Demkovych, A., Sozinov, A., et al., Intron length polymorphism of β-tubulin genes of Aegilops biuncialis Vis, Cell Biol. Int., 2019, vol. 43, no. 9, pp. 1031–1039. https://doi.org/10.1002/cbin.10886

    Article  CAS  PubMed  Google Scholar 

  24. Rakszegi, M., Molnár, I., Lovegrove, A., et al., Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour, Front. Plant Sci., 2017, vol. 8, p. 1529. https://doi.org/10.3389/fpls.2017.01529

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shewry, P., Wheat grain proteins: past, present and future, Cereal Chem., 2022, vol. 100, no. 1, pp. 9–22. https://doi.org/10.1002/cche.10585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Slageren, M.W. van, Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae), Wageningen: Agric. Univ. Pap., 1994.

    Google Scholar 

  27. Tan, F., Zhou, J., Yang, Z., et al., Characterization of a new synthetic wheat – Aegilops biuncialis partial amphiploid, Afr. J. Biotech., 2009, vol. 8, no. 14, pp. 3215–3218. https://doi.org/10.5897/AJB09.359

    Article  CAS  Google Scholar 

  28. Turnbull, K.M., Turner, M., Mukai, Y., et al., The organization of genes tightly linked to the Ha locus in Aegilops tauschii, the D-genome donor to wheat, Genome, 2003, vol. 46, no. 2, pp. 330–338. https://doi.org/10.1139/g02-124

    Article  CAS  PubMed  Google Scholar 

  29. Xiaoling, M., Xue, H., Sun, J., et al., Transformation of Pinb-D1x to soft wheat produces hard wheat kernel texture, J. Cereal Sci., 2020, vol. 91, p. 102889. https://doi.org/10.1016/j.jcs.2019.102889

    Article  CAS  Google Scholar 

  30. Zhou, J.P., Yao, C.H., Yang, E.N., et al., Characterization of a new wheat-Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits, Genet. Mol. Res., 2014, vol. 13, no. 1, pp. 660–669. https://doi.org/10.4238/2014.January.28.11

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, J.P., Cheng, Y., Zang, L.L., et al., Characterization of a new wheat-Aegilops biuncialis 1Mb(1B) substitution line with good quality-associated HMW glutenin subunit, Cereal Res. Commun., 2016, vol. 44, no. 2, pp. 198–205. https://doi.org/10.1556/0806.43.2015.048

    Article  CAS  Google Scholar 

Download references

Funding

The research was supported by project 0123U100962.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. I. Sozinova, N. O. Kozub or Ya. B. Blume.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or humans as objects of research.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sozinova, O.I., Kozub, N.O. & Blume, Y.B. Polymorphism of Pinb-1 Gene Length in Aegilops biuncialis Vis.. Cytol. Genet. 57, 298–304 (2023). https://doi.org/10.3103/S0095452723040102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723040102

Keywords:

Navigation