Skip to main content
Log in

Effects of T-lymphocytes and interferon-γ on different stages of development of multicellular tumor spheroids in vitro

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The effect of T lymphocytes and interferon-γ on the vital activity of breast cancer cell population and the formation of multicellular tumor spheroids was studied. The stages of multicellular tumor spheroid formation and the possible ways for realizing the antitumor effects of T lymphocytes and interferon-γ through changes in the expression of estrogen receptors were demonstrated. The results have shown a correlation between the type of humoral effects and the level of expression of estrogen receptor and epidermal growth factor receptor and the intensity of tumor microaggregate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Molochnaya zheleza: rak i predrakovye sostoyaniya (Mammary Gland: Cancer and Precancerous Lesions) Tarutinov, V.I, Ed., Kiev: Poligrafist, 2006.

    Google Scholar 

  2. Chatterji, U., Riby, J.E., Taniguchi, T., et al., Indole-3-carbinol stimulates transcription of the interferon gamma receptor 1 gene and augments interferon responsiveness in human breast cancer cells, Carcinogenesis, 2004, vol. 25, no. 7, pp. 1119–1128.

    Article  PubMed  CAS  Google Scholar 

  3. Pestka, S., Langer, J.A., Zoon, K.C., and Samuel, C.E., Interferons and their actions, Annu. Rev. Biochem., 1987, vol. 56, pp. 727–777.

    Article  PubMed  CAS  Google Scholar 

  4. Lazieh, A.R., Kyasa, M.J., and Hutchins, L., Phase I clinical trial of tamoxifen and interferon alpha in the treatment of solid tumors, J. Appl. Res., 2004, vol. 4, no. 3, pp. 464–469.

    Google Scholar 

  5. Nigh, Y., Riggins, R.B., Mulla, J.E., et al., Interferon gamma restores breast cancer sensitivity to fulvestrant by regulating STAT1, IRF1, NFkB, BCL2 family members, and signaling to caspase-dependent apoptosis, Mol. Cancer Ther., 2010, vol. 9, no. 5, pp. 1274–1285.

    Article  Google Scholar 

  6. Chavey, C., Bibeau, F., Gourgou-Bourgade, S., et al., Oestrogen receptor negative breast cancers exhibit high cytokine content, Breast Cancer Res., 2007, vol. 9, no. 1, p. R15.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nishikawa, H. and Sacaguchi, S., Regulatory T cells in tumor immunity, Int. J. Cancer, 2010, vol. 127, pp. 759–767.

    PubMed  CAS  Google Scholar 

  8. Erdman, S.E. and Potahidis, T., Cancer inflammation and regulatory T cells, Int. J. Cancer, 2010, vol. 127, pp. 768–779.

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Walser, T.C. and Fulton, A.M., The role of chemokines in the biology and therapy of breast cancer, Breast Dis., 2004, vol. 20, pp. 137–143.

    PubMed  CAS  Google Scholar 

  10. Cancer Immunotherapy at the Crossroads Cytokine, Finke, J.H. and Bukowski, R.M., Eds., New Jersey: Humana Press, 2004.

    Google Scholar 

  11. Muller, A., Homey, B., Soto, H., et al., Involvement of chemokine receptors in breast cancer metastasis, Nature, 2001, vol. 410, no. 6824, pp. 50–56.

    Article  PubMed  CAS  Google Scholar 

  12. Joslin, E.J. and Lauffenburger, D.A., Autocrine growth factor signaling in motility, in Cell Motility in Cancer Invasion and Metastasis, Wells, A., Ed., Springer, 2006, pp. 89–111.

    Chapter  Google Scholar 

  13. Dorsey, R., Kundu, N., Yang, Q., et al., Immunotherapy with interleukin-10 depends on the CXC chemokines inducible protein-10 and monokine induced by IFN gamma, Cancer Res., 2002, vol. 62, no. 9, pp. 2606–2610.

    PubMed  CAS  Google Scholar 

  14. Holt, D.M., Ma, X., Kundu, N., et al., Modulation of host natural killer cell functions in breast cancer via prostaglandin e2 receptors ep2 and ep4, J. Immunother., 2012, vol. 35, no. 2, pp. 179–188.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Edwards, D.P., Regulation of signal transduction pathways by estrogen and progesterone, J. Physiol., 2005, vol. 67, pp. 335–376.

    Article  CAS  Google Scholar 

  16. Murphy, L.C., Mechanisms of hormone independence in human breast cancer, In Vivo, 1998, vol. 12, no. 1, pp. 95–106.

    PubMed  CAS  Google Scholar 

  17. Suo, Z., Risberg, B., Karlsson, M.G., et al., The expression of EGFR family ligands in breast carcinomas, Int. J. Surg. Pathol., 2002, vol. 10, pp. 91–99.

    Article  PubMed  CAS  Google Scholar 

  18. Burova, E., Vassilenko, K., Dorosh, V., et al., Interferon gamma-dependent transactivation of epidermal growth factor receptor, FEBS Lett., 2007, vol. 581, no. 7, pp. 1475–1480.

    Article  PubMed  CAS  Google Scholar 

  19. Horvath, C.M., The jak-stat pathway stimulated by interferon gamma, Sci. STKE, 2004, vol. 2004, no. 260, p. tr8.

    Google Scholar 

  20. Kassi, E. and Moutsatsou, P., Estrogen receptor signaling and its relationship to cytokines in systemic lupus erythematosus, J. Biomed. Biothechnol., 2010, vol. 2010, pp. 1–14.

    Article  Google Scholar 

  21. Paul, G., Marchelletta, R.R., McCole, D.F., and Barrett, K.E., Interferon-γ alters downstream signaling originating from epidermal growth factor receptor in intestinal epithelial cells: functional consequences for ion transport, J. Biol. Chem., 2012, vol. 287, no. 3, pp. 2144–2155.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Geisler, J., Breast cancer tissue estrogens and their manipulation with aromatase inhibitors and inactivators, J. Steroid Biochem. Mol. Biol., 2003, vol. 86, nos. 3/5, pp. 245–253.

    Article  PubMed  CAS  Google Scholar 

  23. Lewis-Wambi, J.S. and Jordan, V.N., Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit, Breast Cancer Res., 2009, vol. 11, no. 3, p. 206.

    Article  Google Scholar 

  24. Schiff, R. and Osborne, C.K., Endocrinology and hormone therapy in breast cancer: new insight into estrogen receptor-γ function and its implication for endocrine therapy resistance in breast cancer, Breast Cancer Res., 2005, vol. 7, pp. 205–211.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Diaz, A., Batista, A.E., and Montero, E., Interferonalpha conditioned sensitivity to an anti-epidermal growth factor receptor monoclonal antibody in a human lung cancer cell line with intermediate expression of the receptor, J. Interferon Cytokine Res., 2009, vol. 29, no. 8, pp. 433–440.

    Article  PubMed  CAS  Google Scholar 

  26. Harada, S., Koyanagi, Y., and Yamamoto, N., Infection of HTLV-III/LAV in HTLV-I-carrying cells MT-2 and MT-4 and application in a plaque assay, Science, 1985, vol. 229, no. 4713, pp. 563–566.

    Article  PubMed  CAS  Google Scholar 

  27. Kelm, J.M., Timmins, N.E., Brown, C.J., et al., Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types, Biotechnol. Bioeng., 2003, vol. 83, no. 2, pp. 173–180.

    Article  PubMed  CAS  Google Scholar 

  28. Garmanchouk, L.V., Perepelytsina, E.M., and Sydorenko, M.V., Formation of multicellular aggregates under different conditions of microenvironment, Cytol. Genet., 2010, vol. 44, no. 1, pp. 19–22.

    Article  Google Scholar 

  29. Spheroid Culture in Cancer Research, Bjerkvig, R., Ed., Boca Raton, FL: CRC Press, 1992.

    Google Scholar 

  30. Hamburger, A.W. and Pinnamaneni, G.D., Increased epidermal growth factor receptor gene expression by interferon in human breast carcinoma cell line, Brit. J. Cancer, 1991, vol. 64, pp. 64–68.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Owen, J.L., Iragavarapu-Chryulu, V., and Lopez, D.M., T cell-derived matrix metalloproteinase-9 in breast cancer: friend or foe, Breast Dis., 2004, vol. 20, pp. 145–153.

    PubMed  CAS  Google Scholar 

  32. Cancer Metastasis and the Lymphovascular System: Basic for Rational Therapy, Leong, S.P.L., Eds., Springer, 2007.

    Google Scholar 

  33. Van Akkoi, A.C.J., Bouwis, M.G., van Geel, A.N., et al., Morbidity and prognosis after therapeutic lymph node dissections for malignant melanoma, Eur. J. Surg. Oncol., 2007, vol. 33, pp. 102–108.

    Article  Google Scholar 

  34. Arya, M., Ahmed, H., Silhi, N., et al., Clinical importance and therapeutic implications of the pivotal CXCL12-CXCR4 (chemokine ligand-receptor) interaction in cancer cell migration, Tumor Biol., 2007, vol. 28, no. 3, pp. 123–131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Perepelytsina.

Additional information

Original Russian Text © O. Perepelytsina, T. Gergeliuk, M. Sydorenko, 2014, published in Tsitologiya i Genetika, 2014, Vol. 48, No. 5, pp. 18–26.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perepelytsina, O., Gergeliuk, T. & Sydorenko, M. Effects of T-lymphocytes and interferon-γ on different stages of development of multicellular tumor spheroids in vitro. Cytol. Genet. 48, 285–292 (2014). https://doi.org/10.3103/S0095452714050065

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452714050065

Keywords

Navigation