Skip to main content
Log in

Enhancement Source of Quadrupolar Interaction by Surface Plasmons Waves

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

This work considers an optical system that operates by both quadrupole transition and evanescent surface plasmons waves. The surface plasmons waves is generated by the total internal reflection, and its intensity is distributed in the vicinity of the surface. The theory of such an optical system is constructed, assuming the quadrupole transition is only allowed, and then the quadrupole optical forces and the ensuing reflection of Cesium atoms is shown. The emphasis here is on the role of the metallic capping layer with a finite thickness and a finite plasma frequency on the evaluation of atomic reflection processes. A desirable enhancement of the evanescent plasmons waves magnitude is obtained. At the same time, a significant decrease in the atom-surface attraction, which is considered one of the biggest obstacles in the atomic reflection process, is achieved. The performance of the atomic reflection process and some associated factors are pointed out and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. C. S. Adams, M. Sigel, and J. Mlynek, Phys. Rep. 240, 145 (1994).

    Article  ADS  Google Scholar 

  2. J. P. Dowling and J. Gea-Banacloche, Adv. Atom. Mol. Opt. Phys. 37, 1 (1997).

    ADS  Google Scholar 

  3. C. Bennett, J. Kirk, and M. Babiker, Phys. Rev. A 63, 033405 (2001).

    Article  ADS  Google Scholar 

  4. J. Kirk, C. Bennett, M. Babiker, and S. Al-Awfi, Phys. Low. Dim. Struct. 3/4, 127 (2002).

    Google Scholar 

  5. V. I. Cooke and R. K. Hill, Opt. Commun. 43, 258 (1982).

    Article  ADS  Google Scholar 

  6. V. L. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, and A. I. Sidorov, Phys. Rev. Lett. 60, 2137 (1988).

    Article  ADS  Google Scholar 

  7. M. Kasevich, D. Weiss, and S. Chu., Opt. Lett. 15, 607 (1990).

    Article  ADS  Google Scholar 

  8. H. Wallis, J. Dalibard, and C. Cohen-Tannoudji, Appl Phys. B 54, 407 (1992).

    Article  ADS  Google Scholar 

  9. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Anderson, Phys. Rev. A 53, R648 (1996).

    Article  ADS  Google Scholar 

  10. P. Ryytty, M. Kaivola, and C. G. Aminoff, Europhys. Lett. 36, 343 (1996).

    Article  ADS  Google Scholar 

  11. R. Cote, B. Segev, and M. G. Raisen, Phys. Rev. A 58, 3999 (1998).

    Article  ADS  Google Scholar 

  12. L. Santos and L. Rose, Phys. Rev. A 58, 2407 (1998).

    Article  ADS  Google Scholar 

  13. N. Friedman, R. Ozeri, and N. Davidson, J. Opt. Soc. Am. 15, 1749 (1998).

    Article  ADS  Google Scholar 

  14. R. J. Wilson, B. Holst, and W. Allison, Rev. Sci. Instrum 70, 2960 (1999).

    Article  ADS  Google Scholar 

  15. S. Feron, J. Reinhardt, S. Lebouteux, O. Gocreix, J. Baudon, M. Ducloy, J. Robert, C. Miniatura, S. N. Chormaic, H. Haberland, and V. Lorent, Opt. Commun. 102, 83 (1993).

    Article  ADS  Google Scholar 

  16. T. Esslinger, M. Weidenmüller, A. Hammerich, and T. W. Hänch, Opt. Lett. 18, 450 (1993).

    Article  ADS  Google Scholar 

  17. W. Seifert, C. S. Adams, V. I. Balykin, C. Heine, Yu. Ovchinikov, and J. Mlynek, Phys. Rev. A 49, 3814 (1994).

    Article  ADS  Google Scholar 

  18. J. Durnin, Opt. Soc. Am. A Opt. Image Sci. 4, 651 (1987).

    Google Scholar 

  19. V. V. Klimov and V. S. Letokhov, Phys. Rev. A 54, 4408 (1996).

    Article  ADS  Google Scholar 

  20. D. Mcgloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).

    Article  ADS  Google Scholar 

  21. Y. Zhu, X. J. Liu, J. Gao, Y. X. Zhang, and F. Zhao, Opt. Express 22, 7765 (2014).

    Article  ADS  Google Scholar 

  22. K. Sakai, K. Nomura, T. Yamamoto, T. Omura, and K. Sasaki, Sci. Rep. 6, 34967 (2016).

    Article  ADS  Google Scholar 

  23. K. Sakai, T. Yamamoto, and K. Sasaki, Sci. Rep. 8, 7746 (2018).

    Article  ADS  Google Scholar 

  24. A. M. Kern and O. J. F. Martin, Phys. Rev. A 85, 022501 (2012).

    Article  ADS  Google Scholar 

  25. A. M. Kern and O. J. F. Martin, Nano Lett. 11, 482 (2011).

    Article  ADS  Google Scholar 

  26. S. Tojo, M. Hasuo, and T. Fujimoto, Phys. Rev. Lett. 92, 053001 (2004).

    Article  ADS  Google Scholar 

  27. V. Lembessis and M. Babiker, Phys. Rev. Lett. 110, 083002 (2013).

    Article  ADS  Google Scholar 

  28. V. Lembessis, S. Al-Awfi, M. Babiker, and D. Andrews, J. Optics 13 (2011). https://doi.org/10.1088/2040-8978/13/6/064002

  29. R. Loudon, The Quantum Theory of Light (Oxford Science, New York, 2000), 3rd ed.

    MATH  Google Scholar 

  30. E. Hinds, Adv. Atom. Mol., Opt. Phys. 28, 237 (1991).

    Google Scholar 

  31. E. Hinds, Adv. Atom. Mol., Opt. Phys. 2, 1 (1993).

    Article  Google Scholar 

  32. M. Babiker and S. Al-Awfi, J. Mod. Optic. 48, 847 (2001).

    Article  ADS  Google Scholar 

  33. V. Sandoghdar, C. Sukenik, E. Hinds, and S. Haroche, Phys. Rev. Lett. 68, 3432 (1992).

    Article  ADS  Google Scholar 

  34. C. Sukenik, M. Boshier, D. Cho, V. Sandoghder, and E. Hinds, Phys. Rev. Lett. 70, 560 (1993).

    Article  ADS  Google Scholar 

  35. S. Al-Awfi, S. Bougouffa, and M. Babiker, Opt. Commun. 283, 1022 (2009).

    Article  ADS  Google Scholar 

  36. M. Babiker, D. Andrews, and V. Lembessis, J. Opt. 21, 013001 (2019).

    Article  ADS  Google Scholar 

  37. W. Seifert, R. Kaiser, A. Aspect, and J. Mlynek, Opt. Commun. 111, 566 (1994).

    Article  ADS  Google Scholar 

  38. R. Kaiser, Y. Levy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipoid, and J. Mlynek, Opt. Commun. 104, 234 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Al-Awfi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Awfi, S. Enhancement Source of Quadrupolar Interaction by Surface Plasmons Waves. Moscow Univ. Phys. 75, 596–604 (2020). https://doi.org/10.3103/S0027134920060028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920060028

Keywords:

Navigation