Skip to main content
Log in

Absorption and generation of electromagnetic waves by structural inhomogeneities of solid

  • Theoretical and Mathematical Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The integrability conditions of the electromagnetic field equations in a continuum with defects and their wave solutions are found. The following dislocation effects on the electromagnetic wave propagation in a continuous medium are investigated: the change in the direction of the electromagnetic wave propagation in a continuous medium; the rotation of the polarization plane of electromagnetic field wave in a continuous medium; the excitation of longitudinal components of the electromagnetic wave in a continuous medium and the change in the electromagnetic wave intensity related to this phenomenon. The energy balance equation for the electromagnetic field in a continuum with a stationary distribution of dislocation is found and it is shown that an electromagnetic wave excites exciton modes localized at dislocations in the solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Kröner, Continuum Theory of Defects. Series of Lectures held at the Summer School on the Physics of Defects (Les Houches, 1980).

    Google Scholar 

  2. A. Kadi and D. Edelen, A Gauge Theory of Dislocations and Disclinations (Springer, 1983).

    Book  MATH  Google Scholar 

  3. R. Kupferman, M. Moshe, and J.P. Solomon, Arch. Ration. Mech. Anal. 216 (3), 1009 (2015).

    Article  MathSciNet  Google Scholar 

  4. K. Viswanathan and S. Chandrasekar J. Appl. Phys., 116, 245103 (2014).

    Article  ADS  Google Scholar 

  5. F. Hehl and M. Lazar, Found. Phys. 40 (9), 1298 (2010).

    ADS  MathSciNet  Google Scholar 

  6. V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Deformation of Solids (Novosibirsk, 1985) [in Russian].

    MATH  Google Scholar 

  7. Yu. A. Ossipyan, Cryst. Res. & Technol. 16 (2), 239 (1981).

    Google Scholar 

  8. R. Sauer, C. Kisielowski-Kimmerich, and H. Alexander, Phys. Rev. Lett. 12, 1472 (1986).

    Article  ADS  Google Scholar 

  9. A. N. Izotov, A. I. Kolyubakin, S. A. Shevchenko, and E. A. Steinman, Dokl. Akad. Nauk SSSR 305 (4), 1104 (1989).

    Google Scholar 

  10. J. Olajos, Y.-B. Jia, J. Engvall, et al., Phys. Rev. B. 49 (4), 2615 (1994).

    Article  ADS  Google Scholar 

  11. B. V. Kamenev, L. Tsybeskov, J.-M. Baribeau, and D. J. Lockwood, Phys. Rev. B. 72 (19), 193306 (2005).

    Article  ADS  Google Scholar 

  12. Yu. S. Lelikov, Yu. T. Rebane, and Yu. G. Shreter, Fiz. Tverd. Tela 32 (9), 2778 (1990).

    Google Scholar 

  13. Yu. S. Lelikov, Yu. T. Rebane, S. S. Ruvimov, et al., Fiz. Tverd. Tela 34 (5), 1513 (1992).

    Google Scholar 

  14. A. T. Blumenau, R. Lones, S. Öberg, and T. Frauenheim, Phys. Rev. Lett. 87 (18), 187404 (2001).

    Article  ADS  Google Scholar 

  15. Y. Kawamura, K. C. Y. Huang, Sh. V. Thombare, et al., Phys. Rev. B. 86 (3), 035306 (2012).

    Article  ADS  Google Scholar 

  16. P. I. Pronin and N. Ed. Smirnov, Moscow Univ. Phys. Bull. 71 (2), 155 (2016).

    Article  ADS  Google Scholar 

  17. M. Ohnami, C. Iwashimizu, K. Genka, et al., Introduction to Micromechanics (Moscow, 1987) [in Russian].

    Google Scholar 

  18. Disclinations. Experimental Research and Theoretical Description, Ed. by V. I. Vladimirov (Leningrad, 1986) [in Russian].

  19. V. P. Frolov and A. Zelnikov, Introduction to Black Hole Physics (Oxford, 2011).

    Book  MATH  Google Scholar 

  20. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford, 1983).

    MATH  Google Scholar 

  21. G. A. Maugin, Continuum Mechanics of Electromagnetic Solids (North-Holland, 1988).

    MATH  Google Scholar 

  22. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons (Springer, 1984).

    Book  Google Scholar 

  23. W. Nowacki, Electromagnetic Effects in Solids (Moscow, 1986) [in Russian].

    Google Scholar 

  24. N. A. Tyapunina and E. P. Belozerova, Sov. Phys. Usp. 31 (12), 1060 (1988).

    Article  ADS  Google Scholar 

  25. D. B. Holt and B. G. Yacobi, Extended Defects in Semiconductors: Electronic Properties, Device Effects and Structures (Cambridge, 2007).

    Book  MATH  Google Scholar 

  26. P. Paufler and K. Löschke, Phil. Mag. A. 47 (1), 79 (1983).

    Article  ADS  Google Scholar 

  27. M. Berezin, E. O. Kazmenetskii, and R. Shavit, J. Opt. 14 (12), 125602 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Pronin.

Additional information

Original Russian Text © P.I. Pronin, N.Ed. Smirnov, 2016, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2016, No. 4, pp. 13–19.

The article was translated by the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pronin, P.I., Smirnov, N.E. Absorption and generation of electromagnetic waves by structural inhomogeneities of solid. Moscow Univ. Phys. 71, 349–355 (2016). https://doi.org/10.3103/S0027134916040160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134916040160

Keywords

Navigation