Skip to main content
Log in

Metric Description of Singular Defects in Isotropic Materials

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Classical elasticity is concerned with bodies that can be modeled as smooth manifolds endowed with a reference metric that represents local equilibrium distances between neighboring material elements. The elastic energy associated with the configuration of a body in classical elasticity is the sum of local contributions that arise from a discrepancy between the actual metric and the reference metric. In contrast, the modeling of defects in solids has traditionally involved extra structure on the material manifold, notably torsion to quantify the density of dislocations and non-metricity to represent the density of point defects. We show that all the classical defects can be described within the framework of classical elasticity using tensor fields that only assume a metric structure. Specifically, bodies with singular defects can be viewed as affine manifolds; both disclinations and dislocations are captured by the monodromy that maps curves that surround the loci of the defects into affine transformations. Finally, we showthat two dimensional defectswith trivial monodromy are purely local in the sense that if we remove from the manifold a compact set that contains the locus of the defect, the punctured manifold can be isometrically embedded in a Euclidean space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharoni, H., Abraham, Y., Elbaum, R., Sharon, E., Kupferman, R.: Emergence of spontaneous twist and curvature in non-Euclidean rods: application to erodium plant cells. Phys. Rev. Lett. 108, 238, 106 (2012)

  2. Armon S., Efrati E., Sharon E., Kupferman R.: Geometry and mechanics of chiral pod opening.. Science 333, 1726–1730 (2011)

    Article  ADS  Google Scholar 

  3. Benzécri J.P.: Sur les variétés localement affines et localement projectives. Bull. de la S.M.F. 88, 229–332 (1960)

    MATH  Google Scholar 

  4. Bilby B., Bullough R., Smith E.: Continuous distributions of dislocations: a new application of the methods of Non-Riemannian geometry. Proc. R. Soc. A 231, 263–273 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bilby B., Smith E.: Continuous distributions of dislocations. III. Proc. R. Soc. Edin. A 236, 481–505 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  6. Dawson C., Vincent J., Rocca A.M.: How pine cones open. Nature 390, 668 (1997)

    Article  ADS  Google Scholar 

  7. Derezin S., Zubov L.: Disclinations in nonlinear elasticity. Z. Angew. Math. Mech. 91, 433–442 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dervaux, J., Ben Amar, M.: Morphogenesis of growing soft tissues. Phys. Rev. Lett. 101, 068,101 (2008)

  9. Do Carmo, M.: Riemannian Geometry. Birkhauser, Boston, 1992

  10. Farb, B., Margalit, D.: A primer on mapping class groups. Princeton University Press, Princeton, 2011

  11. Forterre Y., Skotheim J., Dumais J., Mahadevan L.: How the Venus flytrap snaps. Nature 433, 421–425 (2005)

    Article  ADS  Google Scholar 

  12. Fried D., Goldman W., Hirsch M.: Affine manifolds with nilpotent holonomy. Comment. Math. Helvetici 56, 487–523 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge, 2002

  14. Katanaev M., Volovich I.: Theory of defects in solid and three-dimensional gravity. Ann. Phys. 216, 1–28 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Klein Y., Efrati E., Sharon E.: Shaping of elastic sheets by prescription of non-Euclidean metrics.. Science 315, 1116–1120 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Kondo, K.: Geometry of elastic deformation and incompatibility. Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, Vol. 1 (Eds. K. Kondo) pp. 5–17, 1955

  17. Kroner, E.: The physics of defects. Les Houches Summer School Proceedings (Eds. R. Balian, M. Kleman, J.P. Poirier). North-Holland, Amsterdam, 1981

  18. Kroner E.: The internal mechanical state of solids with defects. Int. J. Solids Struct. 29, 1849–1852 (1992)

    Article  Google Scholar 

  19. Liang, H., Mahadevan, L.: The shape of a long leaf. Proc. Natl. Acad. Sci. USA (2009)

  20. Marder M., Papanicolaou N.: Geometry and elasticity of strips and flowers. J. Stat. Phys. 125, 1069–1092 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. Miri M., Rivier N.: Continuum elasticity with topological defects, including dislocations and extra matter.. J. Phys. A Math. Gen. 35, 1727–1739 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Noll W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2, 197–226 (1958)

    Article  ADS  MATH  Google Scholar 

  23. Ozakin A., Yavari A.: Affine development of closed curves in Weitzenböck manifolds and the burgers vector of dislocation mechanics. Math. Mech. Solids 19, 299–307 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Romanov A.: Mechanics and physics of disclinations in solids.. Europ. J. Mech. A/Solids 22, 727–741 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Seung H., Nelson D.: Defects in flexible membranes with crystalline order. Phys. Rev. A 38, 1005–1018 (1988)

    Article  ADS  Google Scholar 

  26. Volterra, V.: Sur l’équilibre des corps élastiques multiplement connexes. Ann. Sci. Ecole Norm. Sup. Paris 1907 24, 401–518 (1907)

  27. Wang C.C.: On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations. Arch. Rational Mech. Anal. 27, 33–93 (1967)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Wu, Z., Moshe, M., Greener, J., Therien-Aubin, H., Nie, Z., Sharon, E., Kumacheva, E.: Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 4, 1586 (2013). doi:10.1038/ncomms2549

  29. Yavari A., Goriely A.: Riemann–Cartan geometry of nonlinear dislocation mechanics. Arch. Rational Mech. Anal. 205, 59–118 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Yavari A., Goriely A.: Weyl geometry and the nonlinear mechanics of distributed point defects. Proc. R. Soc. A 468, 3902–3922 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  31. Yavari A., Goriely A.: Riemann–Cartan geometry of nonlinear disclination mechanics. Math. Mech. Solids 18, 91–102 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raz Kupferman.

Additional information

Communicated by M. Ortiz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupferman, R., Moshe, M. & Solomon, J.P. Metric Description of Singular Defects in Isotropic Materials. Arch Rational Mech Anal 216, 1009–1047 (2015). https://doi.org/10.1007/s00205-014-0825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0825-y

Keywords

Navigation