Skip to main content
Log in

On the Raushenbakh Resonance

  • Published:
Moscow University Mechanics Bulletin Aims and scope

Abstract

The author’s method of thermodynamic analysis is used to single out two equations of state for the laminar combustion process: the classical Hugoniot adiabat, which determines the pressure, and the equation of state, which determines the entropy. This allows constructing a new mathematical model of the laminar process of vibrational combustion of a two-component mixture by closing the classical models of continuum mechanics. The model is phenomenological, which requires its verification. For numerical verification, the well-known experimental fact is chosen, the appearance of high-frequency acoustic vibrations described by B.V. Raushenbakh. The conditions for the origin of high-frequency oscillations are obtained in terms of the standard chemical potential. They can substantially disturb the combustion process and may cause a catastrophic break-up of the furnace of the engine structure. A numerical experiment established critical values of the standard chemical potential when high-frequency vibrations lead to destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. E. V. Radkevich, E. A. Lukashev, N. N. Yakovlev, O. A. Vasil’eva, and M. I. Sidorov, Introduction to the Generalized Theory of Nonequilibrium Transitions and Thermodynamical Analysis of Problems of Continuum Mechanics (Mosk. Gos. Univ., Moscow, 2019).

    Google Scholar 

  2. E. V. Radkevich, E. A. Lukashev, and O. A. Vasil’eva, ‘‘Hydrodynamic instabilities and nonequilibrium phase transitions,’’ Dokl. Math. 99, 308–312 (2019). doi 10.1134/S1064562419030189

    Article  MATH  Google Scholar 

  3. E. V. Radkevich, O. A. Vasil’eva, and M. I. Sidorov, ‘‘Solidification of binary alloys and nonequilibrium phase transitions,’’ Dokl. Math. 100, 571–576 (2019). doi 10.1134/S1064562419060231.

    Article  MATH  Google Scholar 

  4. E. V. Radkevich, N. N. Yakovlev, and O. A. Vasil’eva, ‘‘Questions and problems of mathematical modeling qua nonequilibrium of combustion processes,’’ Euras. J. Math. Comput. Appl. 8 (4), 31–68 (2020).

    Google Scholar 

  5. G. I. Ksandopulo and V. V. Dubinin, Chemistry of Gas-Phase Combustion (Khimiya, Moscow, 1987).

    Google Scholar 

  6. S. M. Frolov and V. S. Ivanov, ‘‘Combined flame tracking—Particle method for numerical simulation of deflagration-to-detonation transition,’’ in Deflagrative and Detonative Combust, Ed. by G. D. Roy and S. M. Frolov (Torus, Moscow, 2010), pp. 133–156.

    Google Scholar 

  7. A. A. Belyaev, V. Ya. Basevich, F. S. Frolov, S. M. Frolov, B. Basara, and M. Suffa, Combustion and Explosion, Ed. by S. M. Frolov (Torus, Moscow, 2010), Vol. 3, pp. 24–30.

    Google Scholar 

  8. R. D. Reitz, ‘‘Mechanism of atomization processes in high pressure vaporizing spray,’’ Atomization Spray Technol. 3, 309–337 (1987).

    ADS  Google Scholar 

  9. C. H. Lee and R. D. Reitz, ‘‘An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream,’’ Int. J. Multiphase Flow 26, 229–244 (2000). doi 10.1016/S0301-9322(99)00020-8

    Article  MATH  Google Scholar 

  10. E. S. Shchetinkov, Physics of Gas Combustion (Nauka, Moscow, 1965).

    Google Scholar 

  11. B. V. Raushenbakh, Vibrational Combustion (Gos. Izd. Fiz.-Mat. Lit., Moscow, 1961; Foreign Technology Division, Wright-Patterson, Ohio, 1963).

  12. N. N. Smirnov, V. B. Betelin, V. F. Nikitin, Yu. G. Phylippov, and Jaye Koo, ‘‘Detonation engine fed by acetylene-oxygen mixture,’’ Acta Astronaut. 104, 134–146 (2014). doi 10.1016/j.actaastro.2014.07.019

    Article  ADS  Google Scholar 

  13. E. V. Radkevich, N. N. Yakovlev, O. A. Vasil’eva, M. I. Sidorov, and M. Stavrovskii, On the Possibility of Application of the Cahn–Hilliard Theory to the Mathematical Modeling of Combustion Process (Eko-Press, Moscow, 2020).

    Google Scholar 

  14. J. W. Cahn and J. E. Hilliard, ‘‘Free energy of a nonuniform system. 1. Interfacial free energy,’’ J. Chem. Phys. 28, 258–271 (1958). doi 10.1063/1.1744102

    Article  ADS  MATH  Google Scholar 

  15. J. W. Cahn, ‘‘On spinodal decomposition,’’ Acta Metall. 9, 795–811 (1968). doi 10.1016/0001-6160(61)90182-1

    Article  Google Scholar 

  16. P. Debye, Collected Works (Nauka, Leningrad, 1987).

    Google Scholar 

  17. V. V. Kozlov, G. R. Grek, O. P. Korobeinichev, Yu. A. Litvinenko, and A. G. Shmakov, ‘‘Influence of the acceleration vevtor diretcion of Earth gravity on diffusion combustion of the hydrogen microjet,’’ Vestn. PNIPU: Aerokosm. Tekh. 45, 175–192 (2016). doi 10.15593/2224-9982/2016.45.09

    Article  Google Scholar 

  18. J. L. Wagner, ‘‘Experimental studies of unstart dynamics in inlet. Isolator configurations in a mach 5 flow,’’ PhD Dissertation (Univ. of Texas at Austin, Austin, 2011).

  19. Ya. B. Zeldovich and D. A. Frank-Kamenetskii, ‘‘On the theory of uniform flame propagation,’’ Dokl. Akad. Nauk SSSR 19, 693–698 (1938).

    Google Scholar 

  20. Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980).

    Google Scholar 

Download references

Funding

E.V.R. supported by the Russian Foundation for Basic Research (project no. 18-01-00524). M.I.S. supported by the MIREA—Russian Technological University within the initiative research work ITsMR-6 ‘‘Validation and Verification.’’

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Radkevich, O. A. Vasil’eva, M. I. Sidorov or M. E. Stavrovskii.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radkevich, E.V., Vasil’eva, O.A., Sidorov, M.I. et al. On the Raushenbakh Resonance. Moscow Univ. Mech. Bull. 76, 65–77 (2021). https://doi.org/10.3103/S0027133021030055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027133021030055

Keywords:

Navigation