Skip to main content
Log in

Mathematical Modeling of Vibrational Combustion

  • MATHEMATICS
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

A new model of laminar vibrational combustion is constructed relying on a thermodynamic analysis of the combustion process. Two combustion modes, detonation and deflagration, are modeled. The nature of their origin depending on the structure of the standard chemical potential is established, and a numerical experiment concerning the onset of these combustion modes is carried out. By controlling the velocity of the passive component at the inlet, the critical value of the standard chemical potential is identified at which there appear high-frequency vibrations leading to blow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. E. V. Radkevich, N. N. Yakovlev, O. A. Vasil’eva, M. I. Sidorov, and M. Stavrovskii, Possibility of Applying the Cahn–Hilliard Theory to the Mathematical Modeling of Combustion (Eko-Press, Moscow, 2020) [in Russian].

    Google Scholar 

  2. E. V. Radkevich, E. A. Lukashev, N. N. Yakovlev, O. A. Vasil’eva, and M. I. Sidorov, Introduction into Generalized Theory of Nonequilibrium Phase Transitions and Thermodynamic Analysis of Continuum Mechanics Problems (Mosk. Gos. Univ., Moscow, 2019) [in Russian].

    Google Scholar 

  3. E. V. Radkevich, E. A. Lukashev, and O. A. Vasil’eva, Dokl. Math. 99 (3), 308–312 (2019).

    Article  Google Scholar 

  4. E. V. Radkevich, O. A. Vasil’eva, and M. I. Sidorov, Dokl. Math. 100 (3), 571–576 (2019).

    Article  Google Scholar 

  5. S. M. Frolov and V. S. Ivanov, Deflagrative and Detonative Combustion, Ed. by G. D. Roy and S. M. Frolov (Torus, Moscow, 2010) [in Russian].

    Google Scholar 

  6. A. A. Belyaev, V. Ya. Basevich, F. S. Frolov, S. M. Frolov, B. Basara, and M. Suffa, Combustion and Explosion, Ed. by S. M. Frolov (Torus, Moscow, 2010), Vol. 3, p. 30 [in Russian].

    Google Scholar 

  7. R. D. Reitz, Atomization Spray Technol. 3, 309–337 (1987).

    Google Scholar 

  8. C. H. Lee and R. D. Reitz, Int. J. Multiphase Flow 26, 229–244 (2000).

    Article  Google Scholar 

  9. G. I. Ksandopulo and V. V. Dubinin, Gas-Phase Combustion Chemistry (Khimiya, Moscow, 1987) [in Russian].

    Google Scholar 

  10. B. V. Rauschenbach, Vibrational Combustion (Fizmatlit, Moscow, 1961) [in Russian].

    Google Scholar 

  11. E. S. Shchetikov, Physics of Gas Combustion (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 18-01-00524.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Radkevich, N. N. Yakovlev or O. A. Vasilieva.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radkevich, E.V., Yakovlev, N.N. & Vasilieva, O.A. Mathematical Modeling of Vibrational Combustion. Dokl. Math. 102, 505–509 (2020). https://doi.org/10.1134/S1064562420060162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562420060162

Keywords:

Navigation