Skip to main content
Log in

Fractional generalizations of filtering problems and their associated fractional Zakai equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper we discuss fractional generalizations of the filtering problem. The ”fractional” nature comes from time-changed state or observation processes, basic ingredients of the filtering problem. The mathematical feature of the fractional filtering problem emerges as the Riemann-Liouville or Caputo-Djrbashian fractional derivative in the associated Zakai equation. We discuss fractional generalizations of the nonlinear filtering problem whose state and observation processes are driven by time-changed Brownian motion or/and Lévy process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Applebaum, Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge — New York etc. (2004).

    Book  MATH  Google Scholar 

  2. D. Crisan and B. Rozovskii (Eds), The Oxford Handbook of Nonlinear Filtering. Oxford University Press, Oxford — New York (2011).

    MATH  Google Scholar 

  3. F.E. Daum, Solution of the Zakai equation by separation of variables. IEEE Trans. on Automatic Control AC-32, No 10 (1987), 941–943.

    Article  Google Scholar 

  4. F. Daum and J. Huang, Exact particle flow for nonlinear filters: seventeen dubious solutions to a first order linear underdetermined PDE. IEEE Xplore Proc. “Signals, Systems and Computers (ASILOMAR), Conference Nov. 2010 (2010), 64–71, doi:10.1109/ACSSC.2010.5757468.

    Google Scholar 

  5. F. Daum and J. Huang, Particle flow for Bayes’ rule with non-zero diffusion. Proc. SPIE # 8857 (Conf. “Signal and Data Processing of Small Targets 2013”), 88570A (Sept. 30, 2013), doi:10.1117/12.2021370.

    Google Scholar 

  6. M. Fujisaki, G. Kallianpur and H. Kunita, Stochastic differential equations for the nonlinear filtering problem. Osaka J. of Mathematics 9, No 1 (1972), 19–40.

    MATH  MathSciNet  Google Scholar 

  7. M. Hahn, K. Kobayashi and S. Umarov, SDEs driven by a time-changed Lévy process and their associated pseudo-differential equations. J. Theoret. Probab., 25 (2012), 262–279.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Hahn and S. Umarov, Fractional Fokker-Planck-Kolmogorov type equations and their associated stochastic differential equations. Frac. Calc. Appl. Anal. 14, No 1 (2011), 56–79; DOI: 10.2478/s13540-011-0005-9; http://link.springer.com/article/10.2478/s13540-011-0005-9.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Hörmander, The Analysis of Linear Partial Differential Operators, II. Differential Operators with Constant Coefficients. Springer-Verlag, Berlin (1983).

    MATH  Google Scholar 

  10. N. Jacob, Pseudo Differential Operators and Markov Processes, Vol. II. Generators and their Potential Theory. Imperial College Press, London (2002).

    Book  MATH  Google Scholar 

  11. J. Jacod, Calcul Stochastique et Probl`emes de Martingales. Lecture Notes in Mathematics 714. Springer, Berlin (1979).

    Google Scholar 

  12. J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin (1987).

    Book  MATH  Google Scholar 

  13. G. Kallianpur and C. Striebel, Estimation of stochastic systems: arbitrary system process with additive noise observation errors. Ann. Math. Statist., 39, No 3 (1968), 785–801.

    Article  MATH  MathSciNet  Google Scholar 

  14. R.E. Kalman and R.C. Bucy, New results in linear filtering and prediction theory. Journal of Basic Engineering, 83 (1961), 95–108.

    Article  MathSciNet  Google Scholar 

  15. K. Kobayashi, Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations. J. Theoret. Probab., 24 (2010), 789–820.

    Article  Google Scholar 

  16. H.J. Kushner, Dynamical equations for optimal nonlinear filtering. Journal of Differential Equations 3 (1967), 179–190.

    Article  MATH  MathSciNet  Google Scholar 

  17. R.Sh. Lipster and A.N. Shiryaev, Statistics of Random Processes, I, II. Springer, New York (2002).

    Google Scholar 

  18. F. Mainardi, Yu. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153–192.

    MATH  MathSciNet  Google Scholar 

  19. S. Popa and S.S. Sritharan, Nonlinear filtering of Îto-Lévy stochastic differential equations with continuous observations. Communications on Stochastic Analysis 3, No 3 (2009), 313–330.

    MathSciNet  Google Scholar 

  20. T. Meyer-Brandis and F. Proske, Explicit solution of a non-linear filtering problem for Lévy processes with applications to finance. Appl. Math. Optim. 50 (2004), 119–134.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Protter, Stochastic Integration and Differential Equations. 2nd Ed. Springer, Berlin — Heidelberg — New York (2004).

    MATH  Google Scholar 

  22. B.L. Rozovskii, Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering. Kluver Academic Publishers, Dotrecht (1990).

    Google Scholar 

  23. B. Rubin, Fractional Integrals and Potentials. Pitman Monographs and Surveys in Pure and Applied Mathematics, 82, (Addison Wesley) Longman & CRC, Harlow (1996).

    MATH  Google Scholar 

  24. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon etc. (1993).

    MATH  Google Scholar 

  25. K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge — New York etc. (1999).

    MATH  Google Scholar 

  26. V.V. Uchaikin and V.M. Zolotarev, Chance and Stability. Stable Distributions and Their Applications. VSP, Utrecht (1999).

    Book  MATH  Google Scholar 

  27. M. Zakai, On the optimal filtering of diffusion processes. Z. Wahrsch. Verw. Gebiete. 11, No 3 (1969), 230–243.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabir Umarov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umarov, S., Daum, F. & Nelson, K. Fractional generalizations of filtering problems and their associated fractional Zakai equations. Fract Calc Appl Anal 17, 745–764 (2014). https://doi.org/10.2478/s13540-014-0197-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-014-0197-x

MSC 2010

Key Words and Phrases

Navigation