Skip to main content
Log in

Generalized fractional operators on time scales with application to dynamic equations

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We introduce more general concepts of Riemann–Liouville fractional integral and derivative on time scales, of a function with respect to another function. Sufficient conditions for existence and uniqueness of solution to an initial value problem described by generalized fractional order differential equations on time scales are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abbas, M. Benchohra, G.M. N’Guérékata, in Developments in mathematics, Topics in fractional differential equations (Springer, New York, 2012), Vol. 27

  2. E.G. Bajlekova, Fractional evolution equations in Banach spaces (Eindhoven University of Technology, Eindhoven, 2001)

  3. E. Hernández, D. O’Regan, K. Balachandran, Nonlinear Anal. 73, 3462 (2010)

    Article  MathSciNet  Google Scholar 

  4. R. Agarwal, M. Bohner, D. O’Regan, A. Peterson, J. Comput. Appl. Math. 141, 1 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. B. Aulbach, S. Hilger, A unified approach to continuous and discrete dynamics, in Qualitative theory of differential equations (Szeged, 1988), Colloq. Math. Soc. (János Bolyai, 53, North-Holland, Amsterdam, 1990), p. 37

  6. M. Bohner, A. Peterson, Dynamic equations on time scales (Birkhäuser Boston, Inc., Boston, MA, 2001)

  7. N.R.O. Bastos, Fractional calculus on time scales, PhD thesis (under supervision of D.F.M. Torres), University of Aveiro, 2012

  8. N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Discrete Contin. Dyn. Syst. 29, 417 (2011)

    Article  MathSciNet  Google Scholar 

  9. N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Signal Process. 91, 513 (2011)

    Article  Google Scholar 

  10. N.R.O. Bastos, D. Mozyrska, D.F.M. Torres, Int. J. Math. Comput. 11, 1 (2011)

    MathSciNet  Google Scholar 

  11. B. Bayour, D.F.M. Torres, Complex-valued fractional derivatives on time scales, in Differential and difference equations with applications, Springer Proc. Math. Stat. (Springer, Cham, 2016), Vol. 164, p. 79

  12. N. Benkhettou, A.M.C. Brito da Cruz, D.F.M. Torres, Signal Process. 107, 230 (2015)

    Article  Google Scholar 

  13. N. Benkhettou, A.M.C. Brito da Cruz, D.F.M. Torres, Math. Methods Appl. Sci. 39, 261 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. N. Benkhettou, S. Hassani, D.F.M. Torres, J. King Saud Univ. Sci. 28, 93 (2016)

    Article  Google Scholar 

  15. E.R. Nwaeze, D.F.M. Torres, Arab. J. Math. (Springer) 6, 13 (2017)

    Article  MathSciNet  Google Scholar 

  16. M. Sun, C. Hou, Adv. Differ. Equ. 2017, 18 (2017)

    Article  Google Scholar 

  17. I. Yaslan, O. Liceli, Fract. Differ. Calc. 6, 1 (2016)

    MathSciNet  Google Scholar 

  18. R.A. Yan, S.R. Sun, Z.L. Han, Bull. Iran. Math. Soc. 42, 247 (2016)

    Google Scholar 

  19. Z.-J. Gao, X.-Y. Fu, Q.-L. Li, J. Appl. Math. Inform. 33, 275 (2015)

    Article  MathSciNet  Google Scholar 

  20. J. Zhu, L. Wu, Abstr. Appl. Anal. 2015, 23 (2015)

    Article  Google Scholar 

  21. S.-L. Gao, Int. J. Biomath. 6, 11 (2013)

    Article  Google Scholar 

  22. R. Hilfer, Applications of fractional calculus in physics (World Scientific Publishing Co., Inc., River Edge, NJ, 2000)

  23. S. Sun, T. Abdeljawad, J. Alzabut, Discrete Dyn. Nat. Soc. 2013, 2 (2013)

    Google Scholar 

  24. A. Chidouh, A. Guezane-Lakoud, R. Bebbouchi, A. Bouaricha, D.F.M. Torres, Linear and nonlinear fractional Voigt models, in Theory and Applications of Non-integer Order Systems, Springer, Lecture Notes in Electrical Engineering (2017), Vol. 407, p. 157

  25. T. Abdeljawad, D. Baleanu, Commun. Nonlinear Sci. Numer. Simul. 16, 4682 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  26. J. JaganMohan, Novi Sad J. Math. 44, 149 (2014)

    MathSciNet  Google Scholar 

  27. M.R. Sidi Ammi, D.F.M. Torres, J. King Saud Univ. Sci. (2017), DOI:https://doi.org/10.1016/j.jksus.2017.03.004 (in press)

  28. N. Benkhettou, A. Hammoudi, D.F.M. Torres, J. King Saud Univ. Sci. 28, 87 (2016)

    Article  Google Scholar 

  29. B. Aulbach, S. Hilger, in Nonlinear dynamics and quantum dynamical systems (Gaussig, 1990), Math. Res. (Akademie-Verlag, Berlin, 1990), Vol. 59, p. 9

  30. S. Hilger, Results Math. 18, 18 (1990)

    Article  MathSciNet  Google Scholar 

  31. R.P. Agarwal, M. Bohner, Results Math. 35, 3 (1999)

    Article  MathSciNet  Google Scholar 

  32. G.Sh. Guseinov, J. Math. Anal. Appl. 285, 107 (2003)

    Article  MathSciNet  Google Scholar 

  33. D. Mozyrska, E. Pawłuszewicz, D.F.M. Torres, Aust. J. Math. Anal. Appl. 7, 14 (2010)

    Google Scholar 

  34. A. Ahmadkhanlu, M. Jahanshahi, Bull. Iran. Math. Soc. 38, 241 (2012)

    Google Scholar 

  35. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives, translated from the 1987 Russian original (Gordon and Breach Science Publishers, Yverdon, 1993)

  36. A. Granas, J. Dugundji, Fixed point theory, Springer monographs in mathematics (Springer-Verlag, New York, 2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delfim F. M. Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekhalfi, K., Torres, D.F.M. Generalized fractional operators on time scales with application to dynamic equations. Eur. Phys. J. Spec. Top. 226, 3489–3499 (2017). https://doi.org/10.1140/epjst/e2018-00036-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-00036-0

Navigation