Skip to main content
Log in

Fractional Generalizations of Zakai Equation and Some Solution Methods

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The paper discusses fractional generalizations of Zakai equations arising in filtering problems. The derivation of the fractional Zakai equation, existence and uniqueness of its solution, as well as some methods of solution to the fractional filtering problem, including fractional version of the particle flow method, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bensoussan, R. Glowinski, A. Rascanu, Approximations of Zakai equation by the splitting up method. SIAM J. Control Optim. 28, No 6 (1989), 1420–1431.

    Article  MathSciNet  Google Scholar 

  2. A. Budhiraja, G. Kallianpur, Approximation to the solutions of Zakai equations using multiple Wiener and Stratonovich expansions. Stochastics 56 (1996), 271–315.

    MathSciNet  MATH  Google Scholar 

  3. F. Daum, Solution of the Zakai equation by separation of variables. IEEE Trans. on Automatic Control AC-32, No 10 (1987), 941–943.

    Article  Google Scholar 

  4. F. Daum, J. Huang, Particle flow with non-zero diffusion for nonlinear filters, Bayesian decision, and transport. In: Proc. of SPIE Conf. on Signal Processing (Ed. Ivan Kadar), Baltimore, April (2013).

    Google Scholar 

  5. F. Daum, J. Huang, A. Noushin, New theory and numerical experiments for Gromov’s method with stochastic particle flow. In: Proc. of IEEE FUSION Conference, Cambridge, UK, July (2018).

    Google Scholar 

  6. A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [Engl. Transl.: On the motion of small particles suspended in a stationary liquid, as required by the molecular kinetic theory of heat]. Annalen der Physic 17, No 8 (1905), 549–560.

    Article  Google Scholar 

  7. M. Fujisaki, G. Kallianpur, H. Kunita, Stochastic differential equations for the nonlinear filtering problem. Osaka J. of Mathematics 9, No 1 (1972), 19–40.

    MATH  Google Scholar 

  8. B. Grigelionis, Stochastic non-linear filtering equations and semimartingales. In: Lecture Notes Math. 972 (Eds. S.K. Mitter, A. Moro), Springer-Verlag, Berlin (1982), 63–99.

    Google Scholar 

  9. R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order. In: A. Carpinteri and F. Mainardi (Eds.): Fractals and Fractional Calculus in Continuum Mechanics, Springer (1997), 223–276.

    Chapter  Google Scholar 

  10. I. Gyöngy, N.V. Krylov, SPDE’s with unbounded coefficients and applications, I, II. Stochastics and Stochastic Reports 32 (1990), 53–91, 165–180.

    Article  Google Scholar 

  11. M. Hahn, S. Umarov, Fractional Fokker-Plank-Kolmogorov type equations and their associated stochastic differential equations. Fract. Calc. Appl. Anal. 14, No 1 (2011), 56–79; DOI: 10.2478/s13540-011-0005-9; https://www.degruyter.com/view/j/fca.2011.14.issue-1/issue-files/fca.2011.14.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  12. M. Hahn, K. Kobayashi, S. Umarov, Fokker-Planck-Kolmogorov equations associated with time-changed fractional Brownian motion. Proc. Amer. Math, Soc. 139, No 2 (2010), 691–705; 0002-9939(2010)10527-0.

    Article  MathSciNet  Google Scholar 

  13. K. Itô, K. Xiong, Gaussian filters for nonlinear filtering problems. IEEE Trans. on Automatic Control 45, No 5 (2000), 910–927.

    Article  MathSciNet  Google Scholar 

  14. J. Jacod, Calcul Stochastique et Problemes de Martingales. In: Lecture Notes in Mathematics 714, Springer, Berlin (1979), 539 pp.

  15. R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory. J. of Basic Engineering 83 (1961), 95–108.

    Article  MathSciNet  Google Scholar 

  16. H. Kunita, Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge (1990).

    MATH  Google Scholar 

  17. H.J. Kushner, Dynamical equations for optimal nonlinear filtering. J. of Differential Equations 3 (1967), 179–190.

    Article  MathSciNet  Google Scholar 

  18. R.Sh. Lipster, A.N. Shiryaev, Statistics of Random Processes, I, II. Springer, New York (2002).

    Google Scholar 

  19. S. Lototsky, R. Mikulevicius, R. Rozovskii, Nonlinear filtering revisited: A spectral approach. SIAM J. Control Optimization 35 (1997), 435–461.

    Article  MathSciNet  Google Scholar 

  20. T. Meyer-Brandis, F. Proske, Explicit solution of a non-linear filtering problem for Lévy processes with applications to finance. Appl. Math. Optim. 50 (2004), 119–134.

    Article  MathSciNet  Google Scholar 

  21. E. Pardoux, Stochastic differential equations and filtering of diffusion processes. Stochastics 3 (1979), 127–167.

    Article  MathSciNet  Google Scholar 

  22. B.L. Rozovskii, Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering. Kluwer Academic Publishers, Dotrecht (1990).

    Google Scholar 

  23. S. Umarov, F. Daum, K. Nelson, Fractional generalizations of filtering problems and their associated fractional Zakai equations. Fract. Calc. Appl. Anal. 17, No 3 (2014), 745–764; DOI: 10.2478/s13540-014-0197-x; https://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  24. S. Umarov, Introduction to Fractional and Pseudo-Differential Equations with Singular Symbols. Ser. Developments in Mathematics 41, Springer (2015).

  25. S. Umarov, M. Hahn, K. Kobayashi, Beyond the Triangle: Brownian Motion, Itô Calculus, and Fokker-Planck Equation–Fractional Generalizations. World Scientific (2018).

    Book  Google Scholar 

  26. M. Zakai, On the optimal filtering of diffusion processes. Z. Wahrsch. Verw. Gebiete 11, No 3 (1969), 230–243.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabir Umarov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umarov, S., Daum, F. & Nelson, K. Fractional Generalizations of Zakai Equation and Some Solution Methods. FCAA 21, 336–353 (2018). https://doi.org/10.1515/fca-2018-0020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0020

MSC 2010

Key Words and Phrases

Navigation