Skip to main content
Log in

Enantioseparation of mandelic acid and α-cyclohexylmandelic acid using an alcohol/salt-based aqueous two-phase system

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An alcohol/salt-based aqueous two-phase system (ATPS) was employed for enantioseparation of (R,S)-mandelic acid (MA) and (R,S)-α-cyclohexylmandelic acid (α-CHMA). Sulfonated β-cyclodextrin (Sf-β-CD) with different degrees of substitution (DS) was considered as the chiral selector. The ethanol/(NH4)2SO4 system showed the optimal chiral recognition ability for MA. To optimize the experimental conditions, Sf-β-CD concentration, ethanol and salt concentration, temperature, and pH were studied. The recognition ability of enantiomers was mainly dependent on the type of the chiral selector but the ethanol and (NH4)2SO4 concentrations also had significant influence on the enantiomeric recognition. The maximum values of α and ee up of 1.69 and 16.3 % were obtained, respectively, for MA under the optimal conditions. A potential application of this alcohol/salt ATPS is the scale-up of chiral separation of MA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aneja, R., Luthra, P. M.,& Ahuja, S. (2010). High-performance liquid chromatography separation of enantiomers of mandelic acid and its analogs on a chiral stationary phase. Chirality, 22, 479–485. DOI: 10.1002/chir.20767.

    CAS  Google Scholar 

  • Bhushan, R.,& Agarwal, C. (2008). Direct enantiomeric TLC resolution of dl-penicillamine using (R)-mandelic acid and l-tartaric acid as chiral impregnating reagents and as chiral mobile phase additive. Biomedical Chromatography, 22, 1237–1242. DOI: 10.1002/bmc.1052.

    Article  CAS  Google Scholar 

  • Bwambok, D. K., Challa, S. K., Lowry, M.,& Warner, I. M. (2010). Amino acid-based fluorescent chiral ionic liquid for enantiomeric recognition. Analytical Chemistry, 82, 5028–5037. DOI: 10.1021/ac9027774.

    Article  CAS  Google Scholar 

  • Chen, X. Q., Dong, Q. L., Yu, J. G.,& Jiao, F. P. (2013). Extraction of Tryptophan enantiomers by aqueous twophase systems of ethanol and (NH4)2SO4. Journal of Chemical Technology and Biotechnology, 88, 1545–1550. DOI: 10.1002/jctb.4001.

    Article  CAS  Google Scholar 

  • Choi, S. H., Noh, H. J.,& Lee, K. P. (2005). Chiral separation of arylalcohols by capillary electrophoresis using sulfonated β-cyclodextrin and Ag colloids as additives. Bulletin of the Korean Chemical Society, 26, 1549–1554. DOI: 10.5012/bkcs.2005.26.10.1549.

    Article  CAS  Google Scholar 

  • Choi, W. J., Lee, K. Y., Kang, S. H.,& Lee, S. B. (2007). Biocatalytic enantioconvergent separation of racemic mandelic acid. Separation and Purification Technology, 53, 178–182. DOI: 10.1016/j.seppur.2006.06.024.

    Article  CAS  Google Scholar 

  • Guo, Z. F., Li, F. F.,& Xing, J. M. (2011). Chiral recognition of α-cyclohexyl-mandelic acid in alcohol/salt-based aqueous two-phase systems. Chemical Journal of Chinese Universities, 32, 275–280. (in Chinese)

    CAS  Google Scholar 

  • Hsu, S. H., Wu, S. S., Wang, Y. F.,& Wong, C. H. (1990). Lipase-catalyzed irreversible transesterification using enol esters: XAD-8 immobilized lipoprotein lipase-catalyzed resolution of secondary alcohols. Tetrahedron Letters, 31, 6403–6406. DOI: 10.1016/s0040-4039(00)97076-x.

    Article  CAS  Google Scholar 

  • Huang, D., Huang, K., Chen, S., Liu, S.,& Yu, J. (2008). Enantioseparation of racemic α-cyclohexyl-mandelic acid across hollow fiber supported liquid membrane. Journal of the Brazilian Chemical Society, 19, 557–562. DOI: 10.1590/s0103-50532008000300026.

    Article  CAS  Google Scholar 

  • Kim, H., Choi, Y., Lim, J., Paik, S. R.,& Jung, S. (2009). Chiral separation of catechin by capillary electrophoresis using mono-, di-, tri-succinyl-β-cyclodextrin as chiral selectors. Chirality, 21, 937–942. DOI: 10.1002/chir.20696.

    Article  CAS  Google Scholar 

  • Kong, D., Yang, W., Duan, K., Cui, Y., Xing, S., Zhang, X., Sheng, X.,& Zhang, L. T. (2009). Capillary electrophoretic enantioseparation of m-nisoldipine using two different β-cyclodextrins. Journal of Separation Science, 32, 3178–3183. DOI: 10.1002/jssc.200900203.

    Article  CAS  Google Scholar 

  • Li, L. H.,& Li, F. F. (2012). Chiral separation of α-cyclohexylmandelic-acid by aqueous two phase system combined with Cu2-β-cyclodextrin complex. Chemical Engineering Journal, 211-212, 240–245. DOI: 10.1016/j.cej.2012.09.058.

    Article  CAS  Google Scholar 

  • Liu, P., He, W., Qin, X. Y., Wang, Q. F., Li, X. Y.,& Zhang, S. Y. (2009). Analysis of chiral secondary aromatic alcohols by capillary electrophoresis using sulfated β-cyclodextrin as chiral selector. Chinese Journal of Analytical Chemistry, 37, 1167–1172. (in Chinese)

    CAS  Google Scholar 

  • Liu, J. J., Liu, C., Tang, K. W.,& Zhang, P. L. (2014). Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers. Chemical Papers, 68, 599–607. DOI: 10.2478/s11696-013-0501-y.

    Article  CAS  Google Scholar 

  • Matthijs, N., Van Hemelryck, S., Maftouh, M., Massart, D. L.,& Vander Heyden, Y. (2004). Electrophoretic separation strategy for chiral pharmaceuticals using highly-sulfated and neutral cyclodextrins based dual selector systems. Analytica Chimica Acta, 525, 247–263. DOI: 10.1016/j.aca.2004.07.031.

    Article  CAS  Google Scholar 

  • Schuur, B., Verkuijl, B. J., Minnaard, A. J., de Vries, J. G., Heeres, H. J., & Feringa, B. L. (2011). Chiral separation by enantioselective liquid-liquid extraction. Organic & Biomolecular Chemistry, 9, 36–51. DOI: 10.1039/c0ob00610f.

    Article  CAS  Google Scholar 

  • Sun, L. H., Jiang, B.,& Xiu, Z. L. (2009). Aqueous two-phase extraction of 2,3-butanediol from fermentation broths by isopropanol/ammonium sulfate system. Biotechnology Letters, 31, 371–376. DOI: 10.1007/s10529-008-9874-3.

    Article  CAS  Google Scholar 

  • Sunsandee, N., Pancharoen, U., Rashatasakhon, P., Ramakul, P.,& Leepipatpiboon, N. (2013). Enantioselective separation of racemic amlodipine by two-phase chiral extraction containing O,O′-dibenzoyl-(2S,3S)-tartaric acid as chiral selector. Separation Science and Technology, 48, 2363–2371. DOI: 10.1080/01496395.2013.804088.

    Article  CAS  Google Scholar 

  • Svang-Ariyaskul, A., Koros, W. J.,& Rousseau, R. W. (2009). Chiral separation using a novel combination of cooling crystallization and a membrane barrier: Resolution of DLglutamic acid. Chemical Engineering Science, 64, 1980–1984. DOI: 10.1016/j.ces.2008.12.024.

    Article  CAS  Google Scholar 

  • Szemán, J., Ganzler, K., Salgó, A.,& Szejtli, J. (1996). Effect of the degree of substitution of cyclodextrin derivatives on chiral separations by high-performance liquid chromatography and capillary electrophoresis. Journal of Chromatography A, 728, 423–431. DOI: 10.1016/0021-9673(95)01312-1.

    Article  Google Scholar 

  • Tan, T. W., Huo, Q.,& Ling, Q. (2002). Purification of glycyrrhizin from Glycyrrhiza uralensis Fisch with ethanol/phosphate aqueous two phase system. Biotechnology Letters, 24, 1417–1420. DOI: 10.1023/a:1019850531640.

    Article  CAS  Google Scholar 

  • Tan, Z. J., Li, F. F.,& Xu, X. L. (2013). Extraction and purification of anthraquinones derivatives from Aloe vera L. using alcohol/salt aqueous two-phase system. Bioprocess and Biosystems Engineering, 36, 1105–1113. DOI: 10.1007/s00449-012-0864-4.

    Article  CAS  Google Scholar 

  • Tang, K., Chen, Y., Huang, K.,& Liu, J. (2007). Enantioselective resolution of chiral aromatic acids by biphasic recognition chiral extraction. Tetrahedron: Asymmetry, 18, 2399–2408. DOI: 10.1016/j.tetasy.2007.09.031.

    Article  CAS  Google Scholar 

  • Tang, K., Yi, J., Huang, K.,& Zhang, G. (2009). Biphasic recognition chiral extraction: A novel method for separation of mandelic acid enantiomers. Chirality, 21, 390–395. DOI: 10.1002/chir.20601.

    Article  CAS  Google Scholar 

  • Tang, K., Miao, J., Zhou, T., Liu, Y.,& Song, L. (2011). Reaction kinetics in reactive extraction for chiral separation of α-cyclohexyl-mandelic acid enantiomers with hydroxypropyl-β-cyclodextrin. Chemical Engineering Science, 66, 397–404. DOI: 10.1016/j.ces.2010.10.044.

    Article  CAS  Google Scholar 

  • Wang, Z., Cai, C., Lin, Y., Bian, Y., Guo, H.,& Chen, X. (2011). Enantioselective separation of ketoconazole enantiomers by membrane extraction. Separation and Purification Technology, 79, 63–71. DOI: 10.1016/j.seppur.2011.03.013.

    Article  CAS  Google Scholar 

  • Xing, J. M.,& Li, F. F. (2012). Chiral separation of mandelic acid by temperature-induced aqueous two-phase system. Journal of Chemical Technology and Biotechnology, 87, 346–350. DOI: 10.1002/jctb.2720.

    Article  CAS  Google Scholar 

  • Yang, T. (2009). Poly(vinyl alcohol)/sulfated β-cyclodextrin for direct methanol fuel cell applications. International Journal of Hydrogen Energy, 34, 6917–6924. DOI: 10.1016/j.ijhydene.2009.06.027.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fen-Fang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, FF., Tan, ZJ. & Guo, ZF. Enantioseparation of mandelic acid and α-cyclohexylmandelic acid using an alcohol/salt-based aqueous two-phase system. Chem. Pap. 68, 1539–1545 (2014). https://doi.org/10.2478/s11696-014-0594-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0594-y

Keywords

Navigation