Skip to main content

Advertisement

Log in

Chiral separation of α-cyclohexylmandelic acid enantiomers using ionic liquid/salt aqueous two-phase system

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this paper, an ionic liquid-based aqueous two-phase system (ILATPS) was applied to the chiral separation of α-cyclohexylmandelic acid (α-CHMA) enantiomers with hydroxypropyl-β-cyclodextrin (HP-β-CD) as the chiral selector. Several influencing parameters were investigated including the types and concentration of ionic liquids, the amount of phase-forming salt, temperature, mixing time, pH, and the content of HP-β-CD. The results showed that not all ILATPS had the ability to chirally recognise the selected enantiomers and that [C4mim]BF4/(NH4)2SO4-based ATPS possessed the best enantioseparation ability of the investigated ILATPSs. Under optimal conditions, the separation factor (α) attained 1.59 in a single-step extraction. ILATPS is much “greener” than other liquid-liquid extraction systems, showing its potential for application to the chiral separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboul-enein, H. Y., & Islam, M. R. (1991). Direct HPLC separation of thalidomide enantiomers using cellulose tris-4-methylphenyl benzoate chiral stationary phase. Journal of Liquid Chromatography, 14 667–673. DOI: 10.1080/01483919108049279.

    Article  CAS  Google Scholar 

  • Chen, X. Q., Dong, Q. L., Yu, J. G., & Jiao, F. P. (2013). Extraction of tryptophan enantiomers by aqueous two-phase systems of ethanol and (NH4)2SO4. Journal of Chemical Technology and Biotechnology, 88 1545–1550. DOI: 10.1002/jctb.4001.

    Article  CAS  Google Scholar 

  • Fredlake, C. P., Crosthwaite, J. M., Hert, D. G., Aki, S. N. V. K., & Brennecke, J. F. (2004). Thermophysical properties of imidazolium-based ionic liquids. Journal of Chemical & Engineering Data, 49 954–964. DOI: 10.1021/je034261a.

    Article  CAS  Google Scholar 

  • Freire, M. G., Neves, C. M. S. S., Marrucho, I. M., Canongia-Lopes, J. N., Rebelo, L. P. N., & Coutinho, J. A. P. (2010). High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chemistry, 12 1715–1718. DOI: 10.1039/c0gc00179a.

    Article  CAS  Google Scholar 

  • Gellad, W. F., Choi, P., Mizah, M., Good, C. B., & Kesselheim, A. S. (2014). Assessing the chiral switch: Approval and use of single-enantiomer drugs, 2001 to 2011. American Journal of Managed Care, 20 e90–e97.

    Google Scholar 

  • Gong, A. Q., & Zhu, X. S. (2015). Dispersive solvent-free ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction coupled with HPLC for determination of ulipristal acetate. Talanta, 131 603–608. DOI: 10.1016/j.talanta.2014.08.021.

    Article  CAS  Google Scholar 

  • Guo, Z. F., Li, F. F., & Xing, J. M. (2011). Chiral recognition of α-cyclohexyl-mandelic acid in alcohol/salt-based aqueous two-phase systems. Chemical Journal of Chienese Universities, 32 275–280. (in Chinese)

    CAS  Google Scholar 

  • Gutowski, K. E., Broker, G. A., Willauer, H. D., Huddleston, J. G., Swatloski, R. P., Holbrey, J. D., & Rogers, R. D. (2003). Controlling the aqueous miscibility of ionic liquids: Aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. Journal of the American Chemical Society, 125 6632–6633. DOI: 10.1021/ja0351802.

    Article  CAS  Google Scholar 

  • Han, J. A., Wang, Y., Li, Y. F., Yu, C. L., & Yan, Y. S. (2011). Equilibrium phase behavior of aqueous two-phase systems containing 1-alkyl-3-methylimidazolium tetrafluoroborate and ammonium tartrate at different temperatures: Experimental determination and correlation. Journal of Chemical & Engineering Data, 56 3679–3687. DOI: 10.1021/je2006055.

    Article  CAS  Google Scholar 

  • Hatti-Kaul, R. (2001). Aqueous two-phase systems. A general overview. Molecular Biotechnology, 19 269–277. DOI: 10.1385/mb:19:3:269.

    Article  CAS  Google Scholar 

  • Hayakawa, I., Atarashi, S., Yokohama, S., Imamura, M., Sakano, K., & Furukawa, M. (1986). Synthesis and antibacterial activities of optically active ofloxacin. Antimicrobial Agents and Chemotherapy, 29 163–164. DOI: 10.1128/aac.29.1.163.

    Article  CAS  Google Scholar 

  • Jiang, Y. Y., Xia, H. S., Guo, C., Mahmood, I., & Liu, H. Z. (2007). Enzymatic hydrolysis of penicillin in mixed ionic liquids/water two-phase system. Biotechnology Progress, 23 829–835. DOI: 10.1021/bp070074f.

    Article  CAS  Google Scholar 

  • Jiao, F. P., Wang, J., Jiang, X. Y., Yang, H., Shi, S. Y., Chen, X. Q., & Yu, J. G. (2014). Biphasic recognition enantioseparation of ofloxacin enantiomers by an aqueous two-phase system. Journal of Chemical Technology and Biotechnology, accepted. DOI: 10.1002/jctb.4538.

  • Li, C. X., Han, J., Wang, Y., Yan, Y. S., Xu, X. H., & Pan, J. M. (2009). Extraction and mechanism investigation of trace roxithromycin in real water samples by use of ionic liquid-salt aqueous two-phase system. Analytica Chimica Acta, 653 178–183. DOI: 10.1016/j.aca.2009.09.011.

    Article  CAS  Google Scholar 

  • Li, L. H., & Li, F. F. (2012). Chiral separation of α-cyclohexylmandelic-acid by aqueous two phase system combined with Cu2 — β-cyclodextrin complex. Chemical Engineering Journal, 211–212, 240–245. DOI: 10.1016/j.cej.2012.09.058.

    Article  Google Scholar 

  • Li, F. F., Tan, Z. J., & Guo, Z. F. (2014). Enantioseparation of mandelic acid and α-cyclohexylmandelic acid using an alcohol/salt-based aqueous two-phase system. Chemical Papers, 68 1539–1545. DOI: 10.2478/s11696-014-0594-y.

    CAS  Google Scholar 

  • Moghaddam, L., Zhang, Z. Y., Wellard, R. M., Bartley, J. P., O’Hara, I. M., & Doherty, W. O. S. (2014). Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids. Biomass and Bioenergy, 70 498–512. DOI: 10.1016/j.biombioe.2014.07.030.

    Article  CAS  Google Scholar 

  • Nguyen, L. A., He, H., & Pham-Huy, C. (2006). Chiral drugs: An overview. International Journal of Biomedical Science, 2 85–100.

    CAS  Google Scholar 

  • Rogers, R. D., & Seddon, K. R. (2003). Ionic liquids-Solvents of the future? Science, 302 792–793. DOI: 10.1126/science.1090313.

    Article  Google Scholar 

  • Schuur, B., Winkelman, J. G. M., de Vries, J. G., & Heeres, H. J. (2010). Experimental and modeling studies on the enantioseparation of 3,5-dinitrobenzoyl-(R),(S)-leucine by continuous liquid-liquid extraction in a cascade of centrifugal contactor separators. Chemical Engineering Science, 65 4682–4690. DOI: 10.1016/j.ces.2010.05.015.

    Article  CAS  Google Scholar 

  • Schuur, B., Verkuijl, B. J. V., Minnaard, A. J., de Vries, J. G., Heeres, H. J., & Feringa, B. L. (2011). Chiral separation by enantioselective liquid-liquid extraction. Organic & Biomolecular Chemistry, 9 36–51. DOI: 10.1039/c0ob00610f.

    Article  CAS  Google Scholar 

  • Shi, J. H., Su, Y. H., & Jiang, W. (2013). Enantioseparation and chiral recognition of α-cyclohexylmandelic acid and methyl α-cyclohexylmandelate on hydroxypropyl-β-cyclodextrin as chiral selector: HPLC and molecular modeling. Journal of Chromatographic Science, 51 8–16. DOI: 10.1093/chromsci/bms097.

    Article  CAS  Google Scholar 

  • Sunsandee, N., Pancharoen, U., Rashatasakhon, P., Ramakul, P., & Leepipatpiboon, N. (2013). Enantioselective separation of racemic amlodipine by two-phase chiral extraction containing O, O’-dibenzoyl-(2S,3S)-tartaric acid as chiral selector. Separation Science and Technology, 48 2363–2371. DOI: 10.1080/01496395.2013.804088.

    Article  CAS  Google Scholar 

  • Tan, Z. J., Li, F. F., Xu, X. L., & Xing, J. M. (2012a). Simultaneous extraction and purification of aloe polysaccharides and proteins using ionic liquid based aqueous two-phase system coupled with dialysis membrane. Desalination, 286 389–393. DOI: 10.1016/j.desal.2011.11.053.

    Article  CAS  Google Scholar 

  • Tan, Z. J., Li, F. F., & Xu, X. L. (2012b). Isolation and purification of aloe anthraquinones based on an ionic liquid/salt aqueous two-phase system. Separation and Purification Technology, 98 150–157. DOI: 10.1016/j.seppur.2012.06.021.

    Article  CAS  Google Scholar 

  • Tang, K. W., Chen, Y. Y., Huang, K. L., & Liu, J. J. (2007a). Enantioselective resolution of chiral aromatic acids by biphasic recognition chiral extraction. Tetrahedron: Asymmetry, 18 2399–2408. DOI: 10.1016/j.tetasy.2007.09.031.

    Article  CAS  Google Scholar 

  • Tang, K. W., Zhang, G. L., Huang, K. L., Li, Y. J., & Yi, J. M. (2007b). Resolution of α-cyclohexyl-mandelic acid enantiomers by two-phase (O/W) recognition chiral extraction. Science in China Series B: Chemistry, 50 764–769. DOI: 10.1007/s11426-007-0053-5.

    Article  CAS  Google Scholar 

  • Tang, F., Zhang, Q. L., Ren, D. D., Nie, Z., Liu, Q., & Yao, S. Z. (2010). Functional amino acid ionic liquids as solvent and selector in chiral extraction. Journal of Chromatography A, 1217 4669–4674. DOI: 10.1016/j.chroma.2010.05.013.

    Article  CAS  Google Scholar 

  • Tang, K. W., Miao, J. B., Zhou, T., Liu, Y. B., & Song, L. T. (2011). Reaction kinetics in reactive extraction for chiral separation of α-cyclohexyl-mandelic acid enantiomers with hydroxypropyl-β-cyclodextrin. Chemical Engineering Science, 66 397–404. DOI: 10.1016/j.ces.2010.10.044.

    Article  CAS  Google Scholar 

  • Tong, S. Q., Yan, J. Z., Guan, Y. X., Fu, Y. N., & Ito, Y. (2010). Separation of α-cyclohexylmandelic acid enantiomers using biphasic chiral recognition high-speed counter-current chromatography. Journal of Chromatography A, 1217 3044–3052. DOI: 10.1016/j.chroma.2010.02.077.

    Article  CAS  Google Scholar 

  • Wu, C. Z., Wang, J. J., Wang, H. Y., Pei, Y. C., & Li, Z. Y. (2011). Effect of anionic structure on the phase formation and hydrophobicity of amino acid ionic liquids aqueous two-phase systems. Journal of Chromatography A, 1218 8587–8593. DOI: 10.1016/j.chroma.2011.10.003.

    Article  CAS  Google Scholar 

  • Yu, C. L., Han, J. A., Wang, Y., Yan, Y. S., Hu, S. P., Li, Y. F., & Ma, C. H. (2011). Ionic liquid/ammonium sulfate aqueous two-phase system coupled with HPLC extraction of sulfadimidine in real environmental water samples. Chromatographia, 74 407–413. DOI: 10.1007/s10337-011-2079-2.

    Article  CAS  Google Scholar 

  • Yue, Y., Jiang, X. Y., Yu, J. G., & Tang, K. W. (2014). Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems. Chemical Papers, 68 465–471. DOI: 10.2478/s11696-013-0467-9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fen-Fang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LL., Li, FF. & Tan, ZJ. Chiral separation of α-cyclohexylmandelic acid enantiomers using ionic liquid/salt aqueous two-phase system. Chem. Pap. 69, 1465–1472 (2015). https://doi.org/10.1515/chempap-2015-0162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0162

Keywords

Navigation