Skip to main content
Log in

Association of EGF and p53 gene polymorphisms and colorectal cancer risk in the Slovak population

  • Research Article
  • Published:
Central European Journal of Medicine

Abstract

During the transformation process single nucleotide polymorphisms (SNPs) of key genes, such as p53 Arg72Pro or EGF A61G, may mediate various cellular processes. These variants may be associated with colorectal cancer risk (CRC), but conflicting findings have been reported. The purpose of this study was to determine the association of the SNPs in 5′ UTR of EGF A61G and p53 Arg72Pro and CRC in the Slovak population. The present case-control study was carried out in 173 confirmed CRC patients and 303 healthy subjects. Genotyping was performed by PCR-RFLP methods. Significant association was observed between age and CRC risk (p=0.001). Lower CRC risk was seen in younger patients carrying genotype p53 Arg72Pro (0.14; 95% CI 0.02–0.99, p=0.049). Gender-stratified analysis showed a significant inverse association of the polymorphism EGF G61G with CRC risk (0.48; 95% CI 0.2–0.9, p=0.04) only in male patients. Tumour site genotype distribution revealed that female patients with localized colon cancer were significantly associated with p53 Pro72Pro genotype (4.0; 95% CI 1.27–12.7, p=0.04) whereas the cancer of rectosigmoid junction was associated with the EGF G61G genotype (4.5; 95% CI 1.2–16.97, p=0.02). Combination of p53 Arg72Pro or EGF A61G polymorphisms were not associated with CRC risk by using logistic regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hezova R, et al. Common polymorphisms in GSTM1, GSTT1, GSTP1, GSTA1 and susceptibility to CRC the Central-European population. European Journal of Medical Research 17: 17, 2012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ferlay J, et al. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer 127: 2893–2917, 2010

    Article  CAS  PubMed  Google Scholar 

  3. Center MM, Jemal A and Ward, E. International Trends in Colorectal Cancer Incidence Rates. Cancer Epidemiol Biomarkers Prev 18: 1688, 2009

    Article  PubMed  Google Scholar 

  4. Aylon Y and Oren M. New plays in the p53 theatre. Curr. Opin. Genet Dev 21: 86–92, 2010

    Article  PubMed Central  PubMed  Google Scholar 

  5. Whibley C, Pharoah PDP and Hollstein M. p53 polymorphisms: cancer implications. Nature Reviews Cancer 9: 95–107, 2009

    Article  CAS  PubMed  Google Scholar 

  6. Katkoori VR, Jia X, Shanmugam C, Wan W, et al. Prognostic significance of p53 codon 72 polymorphism differs with race in colorectal adenocarcinoma. Clin Cancer Res 15: 2406–2416, 2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Murphy ME. Polymorphic variants in the p53 pathway. Cell Death Differ 13: 916–920, 2006

    Article  CAS  PubMed  Google Scholar 

  8. Thomas M, Kalita A, Labrecque S, et al. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 19: 1092–100, 1999

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Dumont P, Leu JI, Della PA, George DL, and Murphy M. The codon 72 polymorphic variants of p53 have markedly diff erent apoptotic potential. Nat Genet 33: 357–365, 2003

    Article  CAS  PubMed  Google Scholar 

  10. Sullivan A, Syed N, Gasco M et al. Polymorphism in wildtype p53 modulates response to chemotherapy in vitro and in vivo. Oncogene 23: 3328–3337, 2004

    Article  CAS  PubMed  Google Scholar 

  11. Gemignani F, Moreno V, Landi S et al. ATP53 polymorphism is associated with increased risk of CRC and with reduced levels of TP53 mRNA. Oncogene 23: 1954–1956, 2004

    Article  CAS  PubMed  Google Scholar 

  12. Zhu ZZ, Wang AZ, Jia HR et al. Association of the TP53 codon 72 polymorphism with CRC in a Chinese population. Jpn J Clin Oncol 37: 385–390, 2007

    Article  PubMed  Google Scholar 

  13. Sameer AS, Shah ZA, Syeed N, et al. TP53 Pro47Ser and Arg72Pro polymorphisms and CRC predisposition in an ethnic Kashmiri population. Genet Mol Res 9: 651–660, 2010

    Article  CAS  PubMed  Google Scholar 

  14. Själander A, Birgander R, Athlin L et al. P53 germ line haplotypes associated with increased risk for colorectal cancer. Carcinogenesis 16: 1461–1464, 1995

    Article  PubMed  Google Scholar 

  15. Sayhan N, Yazici H, Budak M, et al. P53 codon 72 genotypes in colon cancer. Association with human papillomavirus infection. Res Commun Mol Pathol Pharmacol 109: 25–34, 2001

    CAS  PubMed  Google Scholar 

  16. Hamajima N, Matsuo K, Suzuki T, et al. No associations of p73 G4C14-to-A4T14 at exon 2 and p53 Arg72Pro polymorphisms with the risk of digestive tract cancers in Japanese. Cancer Lett 181: 81–5, 2002

    Article  CAS  PubMed  Google Scholar 

  17. Schneider-Stock R, Boltze C, Peters B, et al. Selective loss of codon 72 proline p53 and frequent mutational inactivation of the retained arginine allele in CRC. Neoplasia 6: 529–535, 2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Pérez LO, Abba MC, Dulout FN et al. Evaluation of p53 codon 72 polymorphismin adenocarcinomas of the colon and rectum in La Plata, Argentina. World J Gastroenterol 12: 1426–1429, 2006

    PubMed  Google Scholar 

  19. Economopoulos KP, Sergentanis TN, Zagouri F, et al. Association between p53 Arg72Pro polymorphism and CRC risk: a meta-analysis. Onkologie 33: 666–74, 2010

    Article  CAS  PubMed  Google Scholar 

  20. Sucheston L, et al. Natural selection and functional genetic variation in the p53 pathway. Hum Mol Genet 20: 1502–1508, 2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Alroy I and Yarden Y. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett: 410: 83–86, 1997

    Article  CAS  PubMed  Google Scholar 

  22. Burgering BM and Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376: 599–602, 1995

    Article  CAS  PubMed  Google Scholar 

  23. Chan TO, Rittenhouse SE and Tsichlis PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68: 965–1014, 1999

    Article  CAS  PubMed  Google Scholar 

  24. Llorens F, Hummel M, Pastor X, et al. Multiple platform assessment of the EGF dependent transcriptome by microarray and deep tag sequencing analysis. BMC Genomics 12: 326, 2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Petit AM, et al. Neutralizing antibodies against EGF and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 151: 1523–1530, 1997

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Nicholson S, et al. EGFR results of a 6 year followup study in operable breast cancer with emphasis on the node negative subgroup. Br J Cancer. 1991 January; 63(1): 146–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Scagliotti GV, Selvaggi G, Novello S, Hirsch FR. The biology of EGFR in lung cancer. Clin Cancer Res 10, 2004.

  28. Obradovic J, Jurisic V. Evaluation of current methods to detect the mutations of EGFR in non-small cell lung cancer patients. Multidiscip Respir Med. 2012 Dec 11;7(1):52

    Article  PubMed Central  PubMed  Google Scholar 

  29. Messa C, Russo F, Caruso MG et al. EGF, TGF-alpha and EGFR in human colorectal adenocarcinoma. Acta Oncol 37: 285–289, 1998

    Article  CAS  PubMed  Google Scholar 

  30. Shahbazi M, Pravica V, Nasreen N et al. Association between functional polymorphism in EGF gene and malignant melanoma. Lancet 359: 397–401, 2002

    Article  CAS  PubMed  Google Scholar 

  31. Hamai Y, Matsumura S, Matsusaki K, et al. A single nucleotide polymorphism in the 5′ untranslated region of the EGF gene is associated with occurrence and malignant progression of gastric cancer. Pathobiology 72: 133–8, 2005

    Article  CAS  PubMed  Google Scholar 

  32. Goto Y, Ando T, Goto H and Hamajima N. No association between EGF gene polymorphism and gastric cancer. Cancer Epidemiol Biomarkers Prev 14: 2454–6, 2005

    Article  CAS  PubMed  Google Scholar 

  33. Costa BM, Ferreira P, Costa S, et al. Association between functional EGF G61A polymorphism and glioma risk. Clin Cancer Res 13: 2621–2626, 2007

    Article  CAS  PubMed  Google Scholar 

  34. Tanabe KK, Lemoine A, Finkelstein DM, et al. EGF gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis. JAMA 299: 53–60, 2008

    Article  CAS  PubMed  Google Scholar 

  35. Wu GC, Hasenberg T, Magdeburg R, et al. Association Between EGF, TGF-b1, VEGF gene polymorphism and colorectal cancer. World J Surg 33: 124–129, 2009

    Article  PubMed  Google Scholar 

  36. Kovar FM, Thallinger C, Marsik CL, et al. The EGF 61A/G polymorphism-a predictive marker for recurrence of liver metastases from CRC. Wien Klin Wochenschr 121: 638–643, 2009

    Article  CAS  PubMed  Google Scholar 

  37. Tenti P, et al. p53 codon 72 polymorphism does not affect the risk of cervical cancer in patients from Northern Italy. Cancer Epidemiol Biomarkers Prev 9: 435–438, 2000

    CAS  PubMed  Google Scholar 

  38. Scheckenbach K, et al. Cancer Epidemiol Biomarkers Prev 13: 1805–1809, 2004

    CAS  PubMed  Google Scholar 

  39. Santos LE, Guilhen AC, de Andrade RA, et al. The role of TP53 Pro47Ser and Arg72Pro SNPs in the susceptibility to bladder cancer. Urol Oncol 29: 291–294, 2011

    Article  CAS  PubMed  Google Scholar 

  40. Srivastava P, Jaiswal PK, Singh V, et al.: Role of p53 gene polymorphism and bladder cancer predisposition in northern India. Cancer Biomark 8: 21–28, 2010

    CAS  PubMed  Google Scholar 

  41. Zorića A, Horvat A, Balija M and Slade N. The Arg72Pro Polymorphism of TP53 in Croatian Population. Croat Chem Acta 85: 239–243, 2012

    Article  Google Scholar 

  42. Aizat AA, Shahpudin SN, Mustapha MA, et al. Association of Arg72Pro of P53 polymorphism with CRC susceptibility risk in Malaysian population. Asian Pac J Cancer Prev 12: 2909–2913, 2011

    PubMed  Google Scholar 

  43. Cao Z, Song JH, Park YK et al. The p53 codon 72 polymorphism and susceptibility to CRC in Korean patients. Neoplasma 56: 114–118, 2009

    Article  CAS  PubMed  Google Scholar 

  44. Eren F, Akkiprik M, Atuğ Ö, et al. R72P Polymorphism of TP53 in Ulcerative Colitis Patients is Associated with the Incidence of Colectomy, Use of Steroids and the Presence of a Positive Family History. Pathol Oncol Res 16: 563–568, 2010

    Article  CAS  PubMed  Google Scholar 

  45. Tang NP, Wu YM, Wang B, Ma J. Systematic review and meta-analysis of the association between P53 codon 72 polymorphism and CRC. Eur J Surg Oncol 36: 431–438, 2010

    Article  PubMed  Google Scholar 

  46. Denisov EV, Cherdyntseva NV, Litviakov NV, et al. TP53 Gene Polymorphisms in Cancer Risk: The Modulating Effect of Ageing, Ethnicity and TP53 Somatic Abnormalities, Tumor Suppressor Genes, Dr. Yue Cheng (Ed.), ISBN: 978-953-307-879-3, 2012

  47. Brozek W, Krivwanek S, Bonner E, et al. Mutual Associations between Malignancy, Age, Gender, and Subsite Incidence of CRC. Anticancer research 29: 3721–3726, 2009

    PubMed  Google Scholar 

  48. Troisi RJ, Freedman AN, Devesa SS. Incidence of colorectal carcinoma in the U.S.: an update of trends by gender, race, age, subsite and stage, 1975–1994. Cancer 85: 1670–1676, 1999

    Article  CAS  PubMed  Google Scholar 

  49. Austoker J. Screening for colorectal cancer. BMJ 309: 382–386, 1994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Mates IN, et al. Single Nucleotide Polymorphisms in CRC: Associations with Tumor Site and TNM Stage. J Gastrointestin Liver Dis 21: 45–52, 2012

    PubMed  Google Scholar 

  51. Vogelstein B and Kinzler KW. Cancer genes and the pathways they control. Nat Med 10: 789–799, 2004

    Article  CAS  PubMed  Google Scholar 

  52. Gervaz P, Bucher P and Morel P. Two colons-two cancers: paradigm shift and clinical implications. J Surg Oncol 88: 261–266, 2004

    Article  PubMed  Google Scholar 

  53. Koushik A, Tranah GJ, Ma J, et al. p53 Arg72Pro polymorphism and risk of colorectal adenoma and cancer. Int J Cancer 119: 1863–1868, 2006

    Article  CAS  PubMed  Google Scholar 

  54. Dakouras A, Nikiteas N, Papadakis E, et al. P53Arg72 homozygosity and its increased incidence in left-sided sporadic colorectal adenocarcinomas, in a Greek-Caucasian population. Anticancer Res 28: 1039–1043, 2008

    CAS  PubMed  Google Scholar 

  55. Olschwang S, Laurent-Puig P, Vassal A, et al. Characterization of a frequent polymorphism in the coding sequence of the TP53 gene in colonic cancer patients and a control population. Hum Genet 86: 369–370, 1991

    Article  CAS  PubMed  Google Scholar 

  56. Koenders PG, Peters WH, Wobbes T, et al. EGFR levels are lower in carcinomatous than in normal CRC tissue. Br J Cancer 65: 189–192, 1992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Spindler KL, Nielsen JN, Ornskov D, et al. EGF A61G polymorphism and EGF gene expression in normal colon tissue from patients with CRC. Acta Oncol 46: 1113–1117, 2007

    Article  CAS  PubMed  Google Scholar 

  58. Lanuti M, et al. A functional EGF polymorphism, EGF serum levels, and esophageal adenocarcinoma risk and outcome. Clin Cancer Res 14: 3216–3222, 2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Graziano F, Ruzzo A, Loupakis F, et al. Pharmacogenetic profiling for cetuximab plus irinotecan therapy in patients with refractory advanced CRC. J Clin Oncol 26(9): 1427–1434, 2008

    Article  CAS  PubMed  Google Scholar 

  60. Lurje G, et al. Polymorphisms in cyclooxygenase-2 and EGFR are associated with progression-free survival independent of K-ras in metastatic CRC patients treated with single-agent cetuximab. Clin Cancer Res 14: 7884–7895, 2008

    Article  CAS  PubMed  Google Scholar 

  61. Lurje G, et al. Genetic variations in angiogenesis pathway genes predict tumor recurrence in localized adenocarcinoma of the esophagus. Ann Surg 251: 857–864, 2010

    Article  PubMed  Google Scholar 

  62. Lieskovan S, Vallbohmer D, Zhang W, et al.: EGF61 Polymorphism Predicts Complete Pathologic Response to Cetuximab-Based Chemoradiation Independent of KRAS Status in Locally Advanced Rectal Cancer Patients. Clin Cancer Res, 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Mahmood.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, S., Sivoňová, M.K., Matáková, T. et al. Association of EGF and p53 gene polymorphisms and colorectal cancer risk in the Slovak population. cent.eur.j.med 9, 405–416 (2014). https://doi.org/10.2478/s11536-013-0300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11536-013-0300-4

Keywords

Navigation