Skip to main content

Advertisement

Log in

Reversible Fluorescence Probe Based on N-Doped Carbon Dots for the Determination of Mercury Ion and Glutathione in Waters and Living Cells

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An “on-off-on” mode was developed for the detection of mercury ion (Hg2+) and glutathione (GSH) with high sensitivity and selectivity based on the nitrogen-doped carbon dots (N-CDs) fluorescent probe. The N-CDs were synthesized through microwave treatment of citric acid and diethylenetriamine for 2 min, and exhibited excellent fluorescence properties and high quantum yield (27.7%). The fluorescence intensity of the N-CDs could be significantly quenched by Hg2+ (turn-off). Upon addition of GSH, the fluorescence intensity of the N-CDs-Hg2+ system could be recovered clearly (turn-on). The limit of detection of Hg2+ and GSH was 23 and 59 nM, respectively. Moreover, the “on-off-on” probe was successfully applied to the determination of Hg2+ in tap water and water from the Yellow River. Meanwhile, due to bright luminescence, good biocompatibility and low cytotoxicity, the N-CDs-based probe was successfully employed as visualizing the intracellular Hg2+ and GSH sensors in live HeLa cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Liu, M. Liao, X. He, X. Liu, X. Kou, and D. Xiao, Anal. Sci., 2015, 31, 971.

    Article  CAS  PubMed  Google Scholar 

  2. E. M. Nolan and S. J. Lippard, Chem. Rev., 2008, 108, 3443.

    Article  CAS  PubMed  Google Scholar 

  3. W. H. Wang, J. O. Escobedo, C. M. Lawrence, and R. M. Strongin, J. Am. Chem. Soc., 2004, 126, 3400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. J. Pittet and R. Weissleder, Cell, 2011, 147, 983.

    Article  CAS  PubMed  Google Scholar 

  5. D. He, X. Yang, X. He, K. Wang, X. Yang, X. He, and Z. Zou, Chem. Commun., 2015, 51, 14764.

    Article  CAS  Google Scholar 

  6. X. Liu, X. Cheng, T. Bing, C. Fang, and D. Shangguan, Anal. Sci., 2010, 26, 1169.

    Article  PubMed  Google Scholar 

  7. C.-Y. Li, Y. Zhou, Y.-F. Li, C.-X. Zou, and X.-F Kong, Anal. Sci., 2013, 29, 899.

    Article  PubMed  Google Scholar 

  8. Q.-Y. Cai, J. Li, J. Ge, L. Zhang, Y.-L. Hu, Z.-H. Li, and L. -B. Qu, Biosens. Bioelectron., 2015, 72, 31.

    Article  CAS  PubMed  Google Scholar 

  9. Y. Xu, X. Niu, H. Zhang, L. Xu, S. Zhao, H. Chen and X. Chen, J. Agric. Food Chem., 2015, 63, 1747.

    Article  CAS  PubMed  Google Scholar 

  10. A. Mishra, M. K. R. Fischer, and P. Bäuerle, Angew. Chem., Int. Ed., 2009, 48, 2474.

    Article  CAS  Google Scholar 

  11. X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, J. Mater. Chem., 2011, 21, 2445.

    Article  CAS  Google Scholar 

  12. A. Salinas-Castillo, M. Ariza-Avidad, C. Pritz, M. Camprubí-Robles, B. Fernández, M. J. Ruedas-Rama, A. MegiaFernández, A. Lapresta-Fernández, F. Santoyo-Gonzalez, A. Schrott-Fischer, and L. F. Capitan-Vallvey, Chem. Commun., 2013, 49, 1103.

    Article  CAS  Google Scholar 

  13. S. Gómez-de Pedro, A. Salinas-Castillo, M. Ariza-Avidad, A. Lapresta-Fernández, C. Sánchez-González, C. S. Martínez-Cisneros, M. Puyol, L. F. Capitan-Vallvey, and J. AlonsoChamarro, Nanoscale, 2014, 6, 6018.

    Article  PubMed  Google Scholar 

  14. A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Marakassides, and E. P. Giannelis, Small, 2008, 4, 455.

    Article  CAS  PubMed  Google Scholar 

  15. S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, and B. Yang, Angew. Chem., Int. Ed., 2013, 52, 3953.

    Article  CAS  Google Scholar 

  16. M. Lan, J. Zhang, Y.-S. Chui, P. Wang, X. Chen, C.-S. Lee, H.-L. Kwong, and W. Zhang, ACS Appl. Mater. Interfaces, 2014, 6, 21270.

    Article  CAS  PubMed  Google Scholar 

  17. H. Li, Z. Kang, Y. Liu, and S. T. Lee, J. Mater. Chem., 2012, 22, 24230.

    Article  CAS  Google Scholar 

  18. A. Cayuela, M. L. Soriano, C. Carrillo-Carrión, and M. Valcárcel, Chem. Commun., 2016, 52, 1311.

    Article  CAS  Google Scholar 

  19. S.-L. Hu, K.-Y. Niu, J. Sun, J. Yang, N.-Q. Zhao, and X.-W. Du, J. Mater. Chem., 2009, 19, 484.

    Article  CAS  Google Scholar 

  20. Y. Dong, N. Zhou, X. Lin, J. Lin, Y. Chi, and G. Chen, Chem. Mater., 2010, 22, 5895.

    Article  CAS  Google Scholar 

  21. L. Bao, Z.-L. Zhang, Z.-Q. Tian, L. Zhang, C. Liu, Y. Lin, B. Qi, and D.-W. Pang, Adv. Mater, 2011, 23, 5801.

    Article  CAS  PubMed  Google Scholar 

  22. Q. Wang, H. Zheng, Y. Long, L. Zhang, M. Gao, and W. Bai, Carbon, 2011, 49, 3134.

    Article  CAS  Google Scholar 

  23. H. Li, F.-Q. Shao, H. Huang, J.-J. Feng, and A.-J. Wang, Sens. Actuators, B, 2016, 226, 506.

    Article  CAS  Google Scholar 

  24. W. Lu, X. Qin, S. Liu, G. Chang, Y. Zhang, Y. Luo, Abdullah M. Asiri, Abdulrahman O. Al-Youbi, and X. Sun, Anal. Chem., 2012, 84, 5351.

    Article  CAS  PubMed  Google Scholar 

  25. S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, Angew. Chem. Int. Ed., 2012, 124, 12381.

    Article  Google Scholar 

  26. S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A. M. Asiri, A. O. Al-Youbi, and X. Sun, Adv. Mater., 2012, 24, 2037.

    Article  CAS  PubMed  Google Scholar 

  27. C. J. Jeong, A. K. Roy, S. H. Kim, J. E. Lee, J. H. Jeong, I. In, and S. Y. Park, Nanoscale, 2014, 6, 15196.

    Article  CAS  PubMed  Google Scholar 

  28. V. Sharma, A. K. Sainib, and S. M. Mobin, J. Mater. Chem. B, 2016, 4, 2466.

    Article  CAS  PubMed  Google Scholar 

  29. Z. Song, F. Quan, Y. Xu, M. Liu, L. Cui, and J. Liu, Carbon, 2016, 104, 169.

    Article  CAS  Google Scholar 

  30. H. Liu, T. Ye, and C. Mao, Angew. Chem. Int. Ed., 2007, 46, 6473.

    Article  CAS  Google Scholar 

  31. L. Zhou, Y. Lin, Z. Huang, J. Ren, and X. Qu, Chem. Commun., 2012, 48, 1147.

    Article  CAS  Google Scholar 

  32. Y. Xia and C. Zhu, Talanta, 2008, 75, 215.

    CAS  PubMed  Google Scholar 

  33. N. Pirrone and K. R. Mahaffey, “Dynamics of Mercury Pollution on Regional and Global Scales: Atmospheric Processes and Human Exposures Around the World”, 2005, Springer, New York, 83.

    Book  Google Scholar 

  34. Z.-X. Wang and S.-N. Ding, Anal. Chem., 2014, 86, 7436.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors also thank Prof. Hongli Chen and Prof. Xingguo Chen for the helpful discussion on the preparation of materials and the sensing procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Yang, S., Guo, M. et al. Reversible Fluorescence Probe Based on N-Doped Carbon Dots for the Determination of Mercury Ion and Glutathione in Waters and Living Cells. ANAL. SCI. 33, 761–767 (2017). https://doi.org/10.2116/analsci.33.761

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.761

Keywords

Navigation