Skip to main content
Log in

One step synthesis of ultra-high quantum yield fluorescent carbon dots for “on-off-on” detection of Hg2+ and biothiols

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

This article has been updated

Abstract

In this paper, the carbon dots (CDs) with strong blue fluorescence were synthesized through hydrothermal method, which using folic acid, ammonium citrate and ethylenediamine as precursors. The prepared CDs with a high absolute quantum yield of 81.94% and showed excellent stability in high concentration salt solution and different pH conditions. With the addition of Hg2+, the signal of CDs was selectively quenched. At the same time, the CDs-Hg2+ system could be recovered after the introduction of biothiols. Moreover, the fluorescence of CDs showed a good linear relationship with Hg2+ (1–15 µM), and the detection limit as low as 0.08 µM. In addition, the prepared CDs with low toxicity could be used to detect Hg2+ in living cells and actual water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Code Availability

Not applicable.

Data Availability

All data generated or analyzed of this study are available within the article.

Change history

  • 05 July 2022

    References are not fully captured in the PDF file.

References

  1. Chung YJ, Kim J, Park CB (2020) Photonic carbon dots as an emerging nanoagent for biomedical and healthcare applications. ACS Nano 14(6):6470–6497. https://doi.org/10.1021/acsnano.0c02114

    Article  CAS  PubMed  Google Scholar 

  2. Li M, Chen T, Gooding JJ, Liu J (2019) Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens 4(7):1732–1748. https://doi.org/10.1021/acssensors.9b00514

    Article  CAS  PubMed  Google Scholar 

  3. Singaravelu CM, Deschanels X, Rey C, Causse J (2021) Solid-State Fluorescent Carbon Dots for Fluorimetric Sensing of Hg2+. ACS Appl NANO Mater 4(6):6386–6397. https://doi.org/10.1021/acsanm.1c01400

    Article  CAS  Google Scholar 

  4. Tang X, Yu H, Bui B, Wang L, Xing C, Wang S, Chen M, Hu Z, Chen W (2021) Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioactive Mater 6(6):1541–1554. https://doi.org/10.1016/j.bioactmat.2020.11.006

    Article  CAS  Google Scholar 

  5. Sohal N, Maity B, Basu S (2021) Morphology-Dependent performance of MnO2 Nanostructure-Carbon Dot-Based biosensors for the detection of glutathione. ACS Appl BIO Mater 4(6):5158–5168. https://doi.org/10.1021/acsabm.1c00353

    Article  CAS  PubMed  Google Scholar 

  6. Louleb M, Latrous L, Rios A, Zougagh M, Rodriguez CE, Algarra M, Soto J (2020) Detection of dopamine in human fluids using N-Doped carbon dots. ACS Appl NANO Mater 3(8):8004–8011. https://doi.org/10.1021/acsanm.0c01461

    Article  CAS  Google Scholar 

  7. Yulu Z, Sizhuo Y, Donghua F, Jake R, Hongwei Z, Wei Y, Jier H (2019) Carbon Quantum Dot/TiO2 Nanohybrids: Efficient Photocatalysts for Hydrogen Generation via Intimate Contact and Efficient Charge Separation. ACS Appl Nano Mater 2(2):1027–1032. https://doi.org/10.1021/acsanm.8b02310

    Article  Google Scholar 

  8. Song T, Zhang X, Wei Y, Yang P (2019) N-Cdots-decorated TiO2(B)/anatase microspheres with high photocatalytic performance in visible light. Int J Hydrogen Energ 44(59):31129–31140. https://doi.org/10.1016/j.ijhydene.2019.10.035

    Article  CAS  Google Scholar 

  9. Feng H, Zhang Y, Cui F (2022) Enhanced photocatalytic activity of Cu2O for visible light-driven dye degradation by carbon quantum dots. Environ Sci Pollut Res Int 29(6):8613–8622. https://doi.org/10.1007/s11356-021-16337-5

    Article  CAS  PubMed  Google Scholar 

  10. Su W, Guo R, Yuan F, Li Y, Li X, Zhang Y, Zhou S, Fan L (2020) Correction to “Red-Emissive carbon quantum dots for nuclear drug delivery in cancer stem cells”. J Phys Chem Lett 11(11):1357–1367. https://doi.org/10.1021/acs.jpclett.0c01408

    Article  CAS  PubMed  Google Scholar 

  11. Chowdhury M, Kumar DP (2021) Paclitaxel-Loaded biotinylated Fe(2+)-Doped carbon dot: Combination therapy in cancer treatment. ACS Appl Bio Mater 4(6):5132–5144. https://doi.org/10.1021/acsabm.1c00348

    Article  CAS  PubMed  Google Scholar 

  12. Yan F, Zhang H, Xu J (2021) Color emission carbon dots with Quench-ResixAstant Solid-State fluorescence for Light-Emitting diodes. ACS Sustainable Chem Eng 9(10):3901–3908. https://doi.org/10.1021/acssuschemeng.0c09133

    Article  CAS  Google Scholar 

  13. Jin L, Zhang L, Yang L, Wu X, Zhang C, Wei K, He L, Han X, Qiao H, Asiri AM, Alamry KA, Zhang K (2020) Orange-red, green, and blue fluorescence carbon dots for white light emitting diodes. J Mater Sci Technol 50:184–191. https://doi.org/10.1016/j.jmst.2020.03.020

    Article  CAS  Google Scholar 

  14. Wang Q, Feng Z, He H, Hu X, Mao J, Chen X, Liu L, Wei X, Liu D, Bi S, Wang X, Ge B, Yu D, Huang F (2021) Nonblinking carbon dots for imaging and tracking receptors on a live cell membrane. Chem Commun 57:5554–5557. https://doi.org/10.1039/d1cc01120k

    Article  CAS  Google Scholar 

  15. Sun Z, Zhou Y, Zhou W, Luo J, Liu R, Zhang X, Zhou L, Pang Q (2021) Pb(II) detection and versatile bio-imaging of green-emitting carbon dots with excellent stability and bright fluorescence. Nanoscale 13(4):2472–2480. https://doi.org/10.1039/d0nr07245a

    Article  CAS  PubMed  Google Scholar 

  16. Gao SY, Wang X, Xu N, Lian HL, Xu L, Zhang WQ, Xu CY (2021) From coconut petiole residues to fluorescent carbon dots via a green hydrothermal method for Fe3+ detection. Cellulose 28(3):1647–1661. https://doi.org/10.1007/s10570-020-03637-1

    Article  CAS  Google Scholar 

  17. Zhang J, Zhao S, Yang Z (2021) Hydrothermal synthesis of blue-green emitting carbon dots based on the liquid products of biodegradation of coal. Int J Energy Res 40:9396–9407. https://doi.org/10.1002/er.6468

    Article  CAS  Google Scholar 

  18. He F, Bai J, Cheng Y et al (2021) Insights into Fluorophores of Dual-Emissive Carbon Dots Derived by Naphthalenediol Solvothermal Synthesis. J Phys Chem C 125(9):5207–5216. https://doi.org/10.1021/acs.jpcc.0c11409

    Article  CAS  Google Scholar 

  19. Sun S, Zhao L, Wu D et al (2021) Manganese-Doped Carbon Dots with Redshifted Orange Emission for Enhanced Fluorescence and Magnetici Resonance Imaging. ACS Applied Bio Materials, 2021, 4 (2): 1969–1975. https://doi.org/10.1021/acsabm.0c01597

  20. Xu ZJ, Jiang Y, Li ZX, Chen C, Kong XY, Chen YW, Zhou GF, Liu JM, Kempa K, Gao JW (2021) Rapid Microwave-Assisted Synthesis of SnO2 Quantum Dots for Efficient Planar Perovskite Solar Cells. ACS Appl ENERGY Mater 4(2):1887–1893. https://doi.org/10.1021/acsaem.0c02992

    Article  CAS  Google Scholar 

  21. Ma CA, Yin CS, Fan YJ, Yang XF, Zhou XP (2019) 21 Highly efficient synthesis of N-doped carbon dots with excellent stability through pyrolysis method. J Mater Sci 54(13):9372–9384. https://doi.org/10.1007/s10853-019-03585-7

    Article  CAS  Google Scholar 

  22. Zulfajri M, Gedda G, Chang CJ, Chang YP, Huang GG (2019) Cranberry Beans Derived Carbon Dots as a Potential Fluorescence Sensor for Selective Detectionof Fe3+ IonsinAqueousSolution. ACS OMEGA 4(13):15382–15392. https://doi.org/10.1021/acsomega.9b01333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin HT, Huang J, Ding LY (2019) 23 Preparation of Carbon Dots with High-Fluorescence Quantum Yield and Their Applicationin Dopamine Fluorescence Probe and Cellular Imaging. J Nanomater 2019:5037243. https://doi.org/10.1155/2019/5037243

  24. Xu Q, Su R, Chen Y, Theruvakkattil SS, Li N, Zheng X, Zhu J, Pan H, Li W, Xu C, Xia Z, Dai L (2018) Metal charge transfer doped carbon dots with reversibly switchable, Ultra-High quantum yield photoluminescence. ACS Appl Nano Mater 1(4):1886–1893. https://doi.org/10.1021/acsanm.8b00277

    Article  CAS  Google Scholar 

  25. Wang L, Jana J, Chung JS, Hur SH (2021) High quantum yield aminophenylboronic acid-functionalized N-doped carbon dots for highly selective hypochlorite ion detection. Spectrochim Acta Part A Mol Biomol Spectrosc 260:1386–1425. https://doi.org/10.1016/j.saa.2021.119895

    Article  CAS  Google Scholar 

  26. Zhou X, Zhao G, Tan X, Qian X, Zhang T, Gui J, Yang L, Xie X (2019) Nitrogen-doped carbon dots with high quantum yield for colorimetric and fluorometric detection of ferric ions and in a fluorescent ink. Mikrochim Acta 186(2):67. https://doi.org/10.1007/s00604-018-3176-9

    Article  PubMed  Google Scholar 

  27. Wu HF, Tong CL (2019) Nitrogen-and Sulfur-Codoped Carbon Dots for Highly Selective and Sensitive Fluorescent Detection of Hg2+ Ions and Sulfidein Environmental Water Samples. J Agr Food Chem 67(10):2794–2800. https://doi.org/10.1021/acs.jafc.8b07176

    Article  CAS  Google Scholar 

  28. Chu HT, Yao D, Chen JQ, Yu M, Su LQ (2021) Detection of Hg2+ by a Dual-Fluorescence Ratio Probe Constructed with Rare-Earth-Element-Doped Cadmium Telluride Quantum Dots and Fluorescent Carbon Dots. ACS OMEGA 6(16):10735–10744. https://doi.org/10.1021/acsomega.1c00263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Desai ML, Jha S, Basu H, Singhal RK, Park TJ, Kailasa SK (2019) Acid Oxidation of Muskmel on Fruit for the Fabrication of Carbon Dots with Specific Emission Colors for Recognition of Hg2+ ions and Cell Imaging. ACS OMEGA 4(21):19332–19340. https://doi.org/10.1021/acsomega.9b02730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu XC, Li C, Wang ZM, Yang JY, Xu M, Dong J, Wang P, Gu JJ, Cao FF (2018) Nitrogen-Doped Carbon Nanoparticles Derived from Silkworm Excrement as On-Off-On Fluorescent Sensors to Detect Fe(III) and Biothiols. Nanomaterials-Basel 8(6):443. https://doi.org/10.3390/nano8060443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lqbal A, Lqbal K, Xu LG, Li B, Gong DY, Liu XY, Guo YL, Liu WS, Qin WW, Guo HC (2018) Heterogeneous synthesis of nitrogen-doped carbon dots prepared via anhydrous citric acid and melamine for selective and sensitive turn on-off-on detection of Hg (II), glutathione and its cellular imaging. Sens Actuat B-Chem 255:1130–1138. https://doi.org/10.1016/j.snb.2017.08.130

    Article  Google Scholar 

  32. Sun JJ, Wang Q, Yang JJ, Zhang JJ, Li Z, Li H, Yang XF (2019) 2,4-Dinitrobenzenesulfonate-functionalized carbon dots as a turn-on fluorescent probe for imaging of biothiols in living cells. Microchim Acta 186(7):402. https://doi.org/10.1007/s00604-019-3503-9

    Article  Google Scholar 

  33. Chang D, Li L, Shi LH, Yang YX (eds) (2020) Hg2+ detection, pH sensing and cell imaging based on bright blue-fluorescent N-doped carbon dots. Analyst 145(24): 8030–8037. https://doi.org/10.1007/s00604-019-3503-9

  34. Jinping S, Xiaomin L, Qi M, Jinhui A, Feng F (2019) Fluorescent boron and nitrogen co-doped carbon dots with high quantum yield for the detection of nimesulide and fluorescence staining. Spectrochim Acta Part A Mol Biomol Spectrosc 216:296–302. https://doi.org/10.1016/j.saa.2019.03.074

    Article  CAS  Google Scholar 

  35. Liu W, Zhang R, Kang Y, Zhang XY, Wang HJ, Li LH, Diao HP, Wei WL (2019) Preparation of nitrogen-doped carbon dots with a high fluorescence quantum yield for the highly sensitive detection of Cu2+ ions, drawing anti-counterfeit patterns and imaging live cells. New Carbon Mater 34(4):390–401. https://doi.org/10.1016/s1872-5805(19)30024-1

    Article  CAS  Google Scholar 

  36. Yang X, Zhang M, Zhang Y et al (2019) Nitrogen and phosphorus co-doped carbon dots as a “turn-off-on” fluorescence probe for the detection of Hg2+ and GSH and cell imaging. Anal Methods 11(45):5803–5809. https://doi.org/10.1039/c9ay01723b

    Article  CAS  Google Scholar 

  37. Ahmed F, Iqbal S, Zhao L, Xiong H (2021) “ON-OFF-ON” fluorescence switches based on N,S-doped carbon dots: Facile hydrothermal growth, selective detection of Hg2+, and as a reversive probe for guanine. Anal Chim Acta 1183:338977. https://doi.org/10.1016/j.aca.2021.338977

    Article  CAS  PubMed  Google Scholar 

  38. Li YX, Lee JY, Lee H, Hu CC, Chiu TC (2021) Highly fluorescent nitrogen-doped carbon dots for selective and sensitive detection of Hg2+ and ClO ions and fluorescent ink. J Photoch Photobio a 405:112931. https://doi.org/10.1016/j.jphotochem.2020.112931

    Article  CAS  Google Scholar 

  39. Lee H, Su YC, Tang HH, Lee YS, Lee JY, Hu CC, Chiu TC (2021) One-Pot Hydrothermal Synthesis of Carbon Dots as Fluorescent Probes for the Determination of Mercuric and Hypochlorite Ions. Nanomaterials-Basel 11(7):1831. https://doi.org/10.3390/nano11071831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Z, Chen M, Guo Y, Zhou J, Shi Q, Sun R (2020) Oxidized nanocellulose facilitates preparing photoluminescent nitrogen-doped fluorescent carbon dots for Fe3+ ions detection and bioimaging. Chem Eng J 384:123260. https://doi.org/10.1016/j.cej.2019.123260

    Article  CAS  Google Scholar 

  41. Hu Y, Gao Z (2019) Hot-injection strategy for 1-min synthesis of carbon dots from oxygen-containing organic solvents: Toward fluorescence sensing of hemoglobin. Dyes Pigm 165:429–435. https://doi.org/10.1016/j.dyepig.2019.03.001

    Article  CAS  Google Scholar 

  42. Kumar A, Kumari A, Mukherjee P, Saikia T, Pal K, Sahu SK (2020) A design of fluorescence-based sensor for the detection of dopamine via FRET as well as live cell imaging. Microchem J 159:105590. https://doi.org/10.1016/j.microc.2020.105590

    Article  CAS  Google Scholar 

  43. Li X, Chai C, Zhang Y, Wang Y, Lv J, Bian W, Choi MMF (2020) Microwave synthesis of nitrogen and sulfur co-doped carbon dots for the selective detection of Hg2+ and glutathione. Opt Mater 99:109559. https://doi.org/10.1016/j.optmat.2019.109559

    Article  CAS  Google Scholar 

  44. Sun D, Liu T, Wang C, Yang L, Yang S, Zhuo K (2020) Hydrothermal synthesis of fluorescent carbon dots from gardenia fruit for sensitive on-off-on detection of Hg2+ and cysteine. Spectrochim Acta Part A Mol Biomol Spectrosc 240:118598. https://doi.org/10.1016/j.saa.2020.118598

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China-Union Foundation of Henan (U1704170), the Key Programs for Science and Technology Development in Henan Province (192102310300), the doctor initiated project funding of Henan Normal University (QD18083), and the Key Scientific Research Project of Henan Ministry of Education (20A610005, 21A180015).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, writing-original draft preparation, data collection and analysis were performed by [Xiaoxiao Gao]. Data curation: [Zheng Fu]. Writing-review and editing: [Yan Zhang]. Supervision: [Fengling Cui]. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fengling Cui.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no competing.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Zhang, Y., Fu, Z. et al. One step synthesis of ultra-high quantum yield fluorescent carbon dots for “on-off-on” detection of Hg2+ and biothiols. J Fluoresc 32, 1921–1930 (2022). https://doi.org/10.1007/s10895-022-03001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03001-5

Keywords

Navigation