Skip to main content
Log in

Determination of Norfloxacin Using a Tetraoxocalix[2]arene[2]-triazine Covalently Functionalized Multi-walled Carbon Nanotubes Modified Electrode

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This paper presents a sensitive voltametric procedure for the determination of norfloxacin (NF) by a tetraoxocalix[2]- arene[2]triazine (TOCT) covalently functionalized multi-walled carbon nanotubes (MWCNTs) modified electrode. The electrochemical sensing of NF was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Through a combination of the excellent selective recognition of TOCT and the outstanding electronic properties of MWCNTs, this electrochemical sensor shows excellent sensitivity and high selectivity for an electrochemical detection of NF. The stripping response is highly linear (R = 0.996) over the NF concentration range of 0.5–8.0 μM with the LOD of 0.1 μM. The fabricated sensors were successfully applied for quantitative detection of NF in pharmaceutical formulations and human urine samples. A high anti-interference ability to common interferences and satisfactory results were obtained. This is expected to play a huge potential in the real-time monitoring of NF in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Agrawal, P. Chandra, R. N. Goyal, and Y. B. Shim, Biosens. Bioelectron., 2013, 47, 307.

    Article  CAS  PubMed  Google Scholar 

  2. R. N. Goyal, A. R. S. Rana, and H. Chasta, Bioelectrochemistry, 2012, 83, 46.

    Article  PubMed  Google Scholar 

  3. O. Ballesteros, I. Toro, V. Sanz-Nebot, A. Navalón, J. L. Vílchez, and J. Barbosa, J. Chromatogr B, 2003, 798, 137.

    Article  CAS  Google Scholar 

  4. W. H. Sheng, Y. C. Chen, J. T. Wang, S. C. Chang, K. T. Luh, and W. C. Hsieh, Diagn. Microbiol. Infect. Dis., 2002, 43, 141.

    Article  CAS  PubMed  Google Scholar 

  5. S. Pakpinyo and J. Sasipreeyajan, Vet. Microbiol., 2007, 125, 59.

    Article  CAS  PubMed  Google Scholar 

  6. L. V. S. Santos, A. M. Meireles, and L. C. Lange, J. Environ. Manage, 2015, 154, 12.

    Article  Google Scholar 

  7. M. Kamruzzaman, A. M. Alam, H. L. Shang, Y. H. Kim, G. M. Kim, and H. O. Sang, J. Lumin., 2012, 132, 3053.

    Article  CAS  Google Scholar 

  8. C. Mendes, A. Buttchevitz, J. H. Kruger, L. S. Bernardi, P. R. Oliveira, and M. A. Silva, Anal. Sci., 2015, 31, 1083.

    Article  CAS  PubMed  Google Scholar 

  9. M. Denadai and Q. B. Cass, J. Chromatogr. A, 2015, 1418, 177.

    Article  CAS  PubMed  Google Scholar 

  10. A. V. Herreraherrera, L. M. Ravelopérez, J. Hernándezborges, M. M. Afonso, J. A. Palenzuela, and M. Á. Rodríguezdelgado, J. Chromatogr. A, 2011, 1218, 5352.

    Article  CAS  PubMed  Google Scholar 

  11. C. C. Liu, X. Feng, H. L. Qian, G. Z. Fang, and S. Wang, Food Anal. Methods, 2015, 8, 596.

    Article  Google Scholar 

  12. M. Devaraj, R. K. Deivasigamani, and S. Jeyadevan, Colloids Surf., B, 2013, 102, 554.

    Article  CAS  Google Scholar 

  13. S. D. Jojoa-sierra, J. Silvaagredo, E. Herreracalderon, and R. A. Torrespalma, Sci. Total Environ., 2017, 575, 1228.

    Article  CAS  PubMed  Google Scholar 

  14. R. Zhang, C. L. Sun, Y. J. Lu, and W. Chen, Anal. Chem., 2015, 87, 12262.

    Article  CAS  PubMed  Google Scholar 

  15. B. Liu, M. Li, Y. S. Zhao, M. F Pan, Y. Gu, W. Sheng, G. Z. Fang, and S. Wang, Sensor, 2018, 18, 1946.

    Article  PubMed  PubMed Central  Google Scholar 

  16. S. Hamnca, L. Phelane, E. Iwuoha, and P. Baker, Anal. Lett., 2017, 50, 1887.

    Article  CAS  Google Scholar 

  17. K. J. Huang, X. Liu, W. Z. Xie, and H. X. Yuan, Colloids Surf., B, 2008, 64, 269.

    Article  CAS  Google Scholar 

  18. A. A. J. Torriero, E. Salinas, J. Rabaa, and J. J. Silber, Biosens. Bioelectron., 2006, 22, 109.

    Article  CAS  PubMed  Google Scholar 

  19. H. D. Silva, J. Pacheco, J. Silva, S. Viswanathan, and C. Delerue-Matos, Sens. Actuators, B, 2015, 219, 301.

    Article  Google Scholar 

  20. F. F. Zhang, S. Q. Gu, Y. P. Ding, Z. Zhang, and L. Li, Anal. Chim. Acta, 2013, 770, 53.

    Article  CAS  PubMed  Google Scholar 

  21. W. J. Zhao, K. Hu, C. J. Wang, S. Liang, B. L. Niu, L. J. He, K. Lu, B. X. Ye, and S. S. Zhang, J. Chromatogr A, 2012, 1223, 72.

    Article  CAS  PubMed  Google Scholar 

  22. H. Y. Aboul-Enein, H. A. A. Wagdy, and R. M. E. Nashar, Curr Anal. Chem., 2009, 5, 249.

    Article  Google Scholar 

  23. R. Ludwig and N. T. K. Dzung, Sensors, 2002, 2, 397.

    Article  Google Scholar 

  24. I. Leray and B. Valeur, Cheminform, 2010, 40, 3525.

    Google Scholar 

  25. M. Shamsipur, A. A. Miran Beigi, M. Teymouri, S. Rasoolipour, and Z. Asfari, Anal. Chem., 2009, 81, 6789.

    Article  CAS  PubMed  Google Scholar 

  26. V. K. Gupta, A. K. Jain, M. A. Khayat, S. K. Bhargava, and J. R. Raisoni, Electrochim. Acta, 2008, 53, 5409.

    Article  CAS  Google Scholar 

  27. F. Wang, Y. J. Wu, K. Lu, and B. X. Ye, Electrochim. Acta, 2013, 87, 756.

    Article  CAS  Google Scholar 

  28. K. M. O'Connor, D. W. M. Arrigan, and G. Svehla, Electroanalysis, 2010, 7, 205.

    Article  Google Scholar 

  29. A. A. Abdelwahab, W. C. Koh, H. B. Noh, and Y. B. Shim, Biosens. Bioelectron., 2010, 26, 1080.

    Article  CAS  PubMed  Google Scholar 

  30. Y. Zhu, J. I. Son, and Y. B. Shim, Biosens. Bioelectron., 2011, 26, 1002.

    Article  Google Scholar 

  31. D. Ersin, I. Onur, and I. Recai, Anal. Sci., 2018, 34, 771.

    Article  Google Scholar 

  32. H. Q. Xia, Y. Kitazumi, O. Shirai, and K. Kano, Anal. Sci., 2017, 33, 839.

    Article  CAS  PubMed  Google Scholar 

  33. C. Özbek, E. Culcular, S. Okur, M. Yilmaz, and M. Kurt, Acta Phys. Pol. A, 2013, 123, 461.

    Article  Google Scholar 

  34. F. L. Supian, S. A. Bakar, N. A. Azahari, and T. H. Richardson, American Institute of Physics, 2013, 1528, 260.

    CAS  Google Scholar 

  35. L. Wang, X. Y. Wang, G. Shi, C. Peng, and Y. H. Ding, Anal. Chem., 2012, 84, 10560.

    Article  CAS  PubMed  Google Scholar 

  36. Q. Q. Wang, D. X. Wang, H. B. Yang, Z. T. Huang, and M. X. Wang, Chem. Eur. J., 2010, 16, 13053.

    Article  CAS  PubMed  Google Scholar 

  37. D. X. Wang, Q. Q. Wang, Y. C. Han, Y. L. Wang, Z. T. Huang, and M. X. Wang, Chemistry, 2010, 16, 7265.

    Article  CAS  PubMed  Google Scholar 

  38. Z. P. Liu, M. L. Jin, J. P. Cao, J. Wang, X. Wang, G. F. Zhou, A. V. D. Berg, and L. L. Shui, Sens. Actuators, B, 2018, 257, 1065.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81803286), Natural Science Foundation of Beijing Municipality (No. 2182083) and Start-up Fundation of Shanxi Medical University (No. 03201516).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Cui or Jialing Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, J., Cui, H., Li, X. et al. Determination of Norfloxacin Using a Tetraoxocalix[2]arene[2]-triazine Covalently Functionalized Multi-walled Carbon Nanotubes Modified Electrode. ANAL. SCI. 35, 979–985 (2019). https://doi.org/10.2116/analsci.19P127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P127

Keywords

Navigation