Skip to main content
Log in

A Method for Methylmercury and Inorganic Mercury in Biological Samples Using High Performance Liquid Chromatography- Inductively Coupled Plasma Mass Spectrometry

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A new determination method was developed for the measurement of methylmercury (Me-Hg) and inorganic mercury (i-Hg) in biological samples using high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) following alkaline extraction. Mercury species in biological samples were extracted with 10% (w/w) tetramethylammonium hydroxide (TMAH) solution at 80°C for 2 h. Methylmercury was completely separated from i-Hg by adamantyl type and octadecylsilyl type columns within 6 and 4 min using isocratic elution, respectively. The detection limits (3(3σ)) of adamantyl and octadecylsilyl columns using the proposed system were 0.08 and 0.13 ng g−1 (as Hg), respectively. Inorganic Hg completely separates from Me-Hg without tailing. The proposed determination methods were applied to several biological certified reference materials (CRMs). The measurement results of Me-Hg obtained by the present method were in good agreement within the expanded uncertainties (k = 2) with the certified values. The analytical precision (n = 3) of Me-Hg was less than 2%, and the recoveries of Me-Hg and i-Hg were 101 ± 1 and 103 ± 3%, respectively. In addition, this method enables the determination of Me-Hg and i-Hg for 20 samples in 1 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO, “The State of World Fisheries and Aquaculture 2014”, 2014, ISSN 1020-5489, Rome.

    Google Scholar 

  2. Codex, “Codex General Standard for Contaminants and Toxins and Food and Feed”, 2015, CODEX STAN, 193-1995.

    Google Scholar 

  3. R. S. Hellberg, C. A. M. DeWitt, and M. T. Morrissey, Compr. Rev. Food Sci. Food Saf., 2012, 11, 490.

    Article  CAS  Google Scholar 

  4. B. Laird, H. M. Chan, K. Kannan, A. Husain, H. Al-Amiri, B. Dashti, A. Sultan, A. Al-Othman, and F. Al-Mutawa, Sci. Total Environ., 2017, 607-608, 375.

    Article  PubMed  Google Scholar 

  5. Ministry of the Environmental, Government of Japan: http://www.env.go.jp/en/chemi/mercury/mcm.html.

  6. C. Ibánez-Palomino, J. F. Lopez-Sanchez, and A. Sahuquillo, Anal. Chim. Acta, 2012, 720, 9.

    Article  PubMed  Google Scholar 

  7. M. Morita, J. Yoshinaga, and J. S. Edmonds, Pure Appl. Chem., 1998, 70, 1585.

    Article  CAS  Google Scholar 

  8. J. Yoshinaga, M. Morita, and K. Okamoto, Fresenius J. Anal. Chem., 1997, 357, 279.

    Article  CAS  Google Scholar 

  9. Ministry of the Environment, Government of Japan, “Manual for Mercury Analysis”, 2004, http://www.env.go.jp/chemi/report/h15-04/index.html.

    Google Scholar 

  10. M. Loger, M. Horvat, H. Akagi, T. Ando, T. Tomiyasu, and V. Fajon, Appl. Organometal. Chem., 2001, 15, 515.

    Article  Google Scholar 

  11. T. Sakamoto, K. Akaki, T. Watanabe, R. Matsuda, and H. Hiwaki, Bunseki Kagaku, 2012, 61, 327.

    Article  CAS  Google Scholar 

  12. A. Chow and D. Buksak, Canadian J. Chem., 1975, 53, 1373.

    Article  CAS  Google Scholar 

  13. Ministry of the Environment, Government of Japan, “Manual for Mercury Analysis”, March 2004, http://www.env.go.jp/chemi/report/h15-04/index.html.

    Google Scholar 

  14. F. V. M. Pontes, M. C. Carneiro, D. S. Vaitsman, M. I. C. Monteiro, A. A. Neto, and M. L. B. Tristao, Fuel, 2014, 116, 421.

    Article  CAS  Google Scholar 

  15. P. Kumkrong, B. Thiensong, P. M. Le, G. McRae, A. Windust, S. Deawtong, J. Meija P. Maxwell, L. Yang, and Z. Mester, Anal. Chim. Acta, 2016, 943, 41.

    Article  CAS  PubMed  Google Scholar 

  16. H. Tao, T. Murakami, M. Tominaga, and A. Miyazaki, J. Anal. At. Spectrom., 1998, 13, 1085.

    Article  CAS  Google Scholar 

  17. Q. Tu, J. Qiana, and W. Frech, J. Anal. At. Spectrom., 2000, 15, 1583.

    Article  CAS  Google Scholar 

  18. G. M. M. Rahman, M. M. Wolle, T. Fahrenholz, H. M. S. Kingston, and M. Pamuku, Anal. Chem., 2014, 86, 6130.

    Article  CAS  PubMed  Google Scholar 

  19. S. Clémens, M. Monperrus, O. F. X. Donard, D. Amouroux, and T. Guerin, Anal. Bioanal. Chem., 2011, 401, 2699.

    Article  PubMed  Google Scholar 

  20. H. Pietilä, P. Perämäki, J. Piispanen, M. Starr, T. Nieminen, M. Kantola, and L. Ukonmaanaho, Chemosphere, 2015, 124, 47.

    Article  PubMed  Google Scholar 

  21. L. D’Ulivo, L. Yang, Y.-L. Feng, and Z. Mester, Anal. Methods, 2013, 5, 7127.

    Article  Google Scholar 

  22. L. Yang, Z. Mester, and R. E. Sturgeon, J. Anal. At. Spectrom., 2003, 18, 431.

    Article  CAS  Google Scholar 

  23. S. Zhu, B. Chen, M. He, T. Huang, and B. Hu, Talanta, 2017, 171, 213.

    Article  CAS  PubMed  Google Scholar 

  24. R. Koplfk, I. Klimesová, K. Malisová, and O. Mestek, Czech J. Food Sci., 2014, 32, 249.

    Article  Google Scholar 

  25. S. C. Hight and J. Cheng, Anal. Chim. Acta, 2006, 567, 160.

    Article  CAS  Google Scholar 

  26. S. Sannac, P. Fisicaro, G. Labarraque, F. Pannier, and M. Potin-Gautie, Accred. Qual. Assur, 2009, 14, 263.

    Article  CAS  Google Scholar 

  27. M. Amde, Y. Yin, D. Zhang, and J. Liu, Chem. Spec. Bioavailab., 2016, 28, 51.

    Article  CAS  Google Scholar 

  28. R. Rai, W. Maher, and F. Kirkowa, J. Anal. At. Spectrom., 2002, 12, 1560.

    Article  Google Scholar 

  29. R. Jagtap, F. Krikowa, W. Maher, S. Foster, and M. Ellwood, Talanta, 2011, 85, 49.

    Article  CAS  PubMed  Google Scholar 

  30. M. Lemes and F. Wang, J. Anal. At. Spectrom., 2009, 24, 663.

    Article  CAS  Google Scholar 

  31. C. C. Brombach, Z. Gajdosechova, B. Chen, A. Brownlow, W. T. Corns, J. Feldmann, and E. M. Krupp, Anal. Bioanal. Chem., 2015, 407, 973.

    Article  CAS  PubMed  Google Scholar 

  32. C. C. Brombach, B. Chen, W. T. Corns, J. Feldmann, and E. M. Krupp, Spectrochim. Acta, Part B, 2015, 105, 103.

    Article  CAS  Google Scholar 

  33. M. E. Pichichero, E. Cernichiari, J. Lopreiato, and J. Treanor, Lancet, 2002, 360, 1737.

    Article  CAS  PubMed  Google Scholar 

  34. T. M. Burbacher, D. D. Shen, N. Liberato, K. S. Grant, E. Cernichiari, and T. Clarkson, Environ. Health Perspect., 2005, 113, 1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Krata, E. Vassileva, and E. Bulska, Talanta, 2016, 160, 562.

    Article  CAS  PubMed  Google Scholar 

  36. J. Qvarnström, L. Lambertsson, S. Havarinasab, P. Hultman, and W. Frech, Anal. Chem., 2003, 75, 4120.

    Article  PubMed  Google Scholar 

  37. C. C. Brombach, P. Manorut, P. P. P. Kolambage-Dona, M. F. Ezzeldin, B. Chen, W. T. Corns, J. Feldmann, and E. M. Krupp, Food Chem., 2017, 214, 360.

    Article  CAS  PubMed  Google Scholar 

  38. M. A. Vieira, A. S. Ribeiro, A. J. Curtius, and R. E. Sturgeon, Anal. Bioanal. Chem., 2007, 388, 837.

    Article  CAS  PubMed  Google Scholar 

  39. C. M. Tseng, A. De Diego, F. M. Martin, D. Amouroux, and O. F. X. Donard, J. Anal. At. Spectrom., 1997, 12, 743.

    Article  CAS  Google Scholar 

  40. C. C. Brombach, M. F. Ezzeldin, B. Chen, W. T. Corns, J. Feldmann, and E. M. Krupp, Anal. Methods, 2015, 7, 8584.

    Article  CAS  Google Scholar 

  41. H. Matusiewicz and E. Stanisz, Cent. Eur. J. Chem., 2010, 8, 594.

    CAS  Google Scholar 

  42. L. Carrasco and E. Vassileva, Talanta, 2014, 122, 106.

    Article  CAS  PubMed  Google Scholar 

  43. R. Falter, H. Hintelmann, and P. Quevauviller, Chemosphere, 1999, 39, 1039.

    Article  CAS  Google Scholar 

  44. H. Hintelmann, Chemosphere, 1999, 39, 1093.

    Article  CAS  Google Scholar 

  45. H. Hintelmann, R. Falter, G. Ilgen, and R. D. Evans, Fresenius J. Anal. Chem., 1997, 358, 363.

    Article  CAS  Google Scholar 

  46. C. R. Hammerschmidt and W. F. Fitzgerald, Anal. Chem., 2001, 73, 5930.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Jun Yoshinaga of Toyo University for kindly providing the mercury materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Narukawa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narukawa, T., Iwai, T., Chiba, K. et al. A Method for Methylmercury and Inorganic Mercury in Biological Samples Using High Performance Liquid Chromatography- Inductively Coupled Plasma Mass Spectrometry. ANAL. SCI. 34, 1329–1334 (2018). https://doi.org/10.2116/analsci.18P255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P255

Keywords

Navigation