Skip to main content
Log in

Determination of total mercury and methylmercury in biological samples by photochemical vapor generation

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cold vapor atomic absorption spectrometry (CV-AAS) based on photochemical reduction by exposure to UV radiation is described for the determination of methylmercury and total mercury in biological samples. Two approaches were investigated: (a) tissues were digested in either formic acid or tetramethylammonium hydroxide (TMAH), and total mercury was determined following reduction of both species by exposure of the solution to UV irradiation; (b) tissues were solubilized in TMAH, diluted to a final concentration of 0.125% m/v TMAH by addition of 10% v/v acetic acid and CH3Hg+ was selectively quantitated, or the initial digests were diluted to 0.125% m/v TMAH by addition of deionized water, adjusted to pH 0.3 by addition of HCl and CH3Hg+ was selectively quantitated. For each case, the optimum conditions for photochemical vapor generation (photo-CVG) were investigated. The photochemical reduction efficiency was estimated to be ∼95% by comparing the response with traditional SnCl2 chemical reduction. The method was validated by analysis of several biological Certified Reference Materials, DORM-1, DORM-2, DOLT-2 and DOLT-3, using calibration against aqueous solutions of Hg2+; results showed good agreement with the certified values for total and methylmercury in all cases. Limits of detection of 6 ng/g for total mercury using formic acid, 8 ng/g for total mercury and 10 ng/g for methylmercury using TMAH were obtained. The proposed methodology is sensitive, simple and inexpensive, and promotes “green” chemistry. The potential for application to other sample types and analytes is evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leermakers M, Baeyens W, Quevauviller P, Horvat M (2005) Trends Anal Chem 24:383–393

    Article  CAS  Google Scholar 

  2. Welz B, Sperling M (1999) Atomic absorption spectrometry. Wiley-VCH, Weinheim

  3. Ribeiro AS, Vieira MA, Curtius AJ (2004) J Braz Chem Soc 15:825–831

    CAS  Google Scholar 

  4. Sturman BT (1985) Appl Spectrosc 39:48–56

    Article  ADS  CAS  Google Scholar 

  5. Welz B, Schubert-Jacobs M, Schlemmer G (1988) Fresenius Z Anal Chem 331:324–329

    Article  CAS  Google Scholar 

  6. Cai Y (2000) Trends Anal Chem 19:62–66

    Article  CAS  Google Scholar 

  7. Gámiz-Gracia L, Luque de Castro MD (1999) J Anal Atom Spectrom 14:1615–1617

    Article  Google Scholar 

  8. Yan X, Ni Z, Guo Q (1993) Anal Chim Acta 272:105–114

    Article  CAS  Google Scholar 

  9. Flores EMM, Welz B, Curtius AJ (2001) Spectrochim Acta B 56:1605–1614

    Article  Google Scholar 

  10. Akagi H, Sakagami Y (1972) J Hyg Chem (Jpn) 18:358

    CAS  Google Scholar 

  11. Akagi H, Takabatake E (1973) Chemosphere 3:131–133

    Article  Google Scholar 

  12. Akagi H, Fujita Y, Takabatake E (1976) Chem Lett 49:1–4

    Article  Google Scholar 

  13. Canario J, Vale C (2004) Environ Sci Technol 38:3901–3907

    Article  PubMed  CAS  Google Scholar 

  14. Siciliano SD, O’Driscoll NJ, Tordon R, Hill J, Beauchamp S, Lead DRS (2005) Environ Sci Technol 39:1071–1077

    Article  PubMed  CAS  Google Scholar 

  15. Golimowski J, Golimowska K (1996) Anal Chim Acta 325:111–133

    Article  CAS  Google Scholar 

  16. Capelo-Martínez JL, Xímenes-Embún P, Madrid Y, Cámara C (2004) Trends Anal Chem 23:331–340

    Article  Google Scholar 

  17. Guo X, Sturgeon RE, Mester Z, Gardner GJ (2003) Anal Chem 75:2092–2099

    Article  PubMed  CAS  Google Scholar 

  18. Guo X, Sturgeon RE, Mester Z, Gardner GJ (2003) Environ Sci Technol 37:5645–5650

    Article  PubMed  CAS  Google Scholar 

  19. Guo X, Sturgeon RE, Mester Z, Gardner GJ (2005) J Anal Atom Spectrom 20:702–708

    Article  CAS  Google Scholar 

  20. McSheehy S, Guo X-M, Sturgeon RE, Mester Z (2005) J Anal Atom Spectrom 20:709–716

    Article  CAS  Google Scholar 

  21. Guo X, Sturgeon RE, Mester Z, Gardner GJ (2004) Appl Organomet Chem 18:205–211

    Article  CAS  Google Scholar 

  22. Guo X, Sturgeon RE, Mester Z, Gardner GJ (2004) Anal Chem 76:2401–2405

    Article  PubMed  CAS  Google Scholar 

  23. García M, Figueroa R, Lavilla I, Bendicho C (2006) J Anal Atom Spectrom 21:582–587

    Article  Google Scholar 

  24. Wang Q, Liang J, Qiu J, Huang B (2004) J Anal Atom Spectrom 19:715–716

    Article  Google Scholar 

  25. Figueroa R, García M, Lavilla I, Bendicho C (2005) Spectrochim Acta B 60:1556–1563

    Article  Google Scholar 

  26. Sun YC, Chang YC, Su CK (2006) Anal Chem 78:2640–2645

    Article  PubMed  CAS  Google Scholar 

  27. Wang X, Penkonen SO, Ray AK (2004) Electrochim Acta 49:1435–1444

    CAS  Google Scholar 

  28. Khalil LB, Rophael MW, Mourad WE (2002) Appl Catal B36:125–130

    Article  Google Scholar 

  29. Zheng C, Li Y, He Y, Ma Q, Hou X (2005) J Anal Atom Spectrom 20:746–750

    Article  CAS  Google Scholar 

  30. Li Y, Zheng C, Ma Q, Wu L, Hu C, Hou X (2006) J Anal Atom Spectrom 21:82–85

    Article  CAS  Google Scholar 

  31. Bendl RF, Madden JT, Regan AL, Fitzgerald N (2006) Talanta 68:1366–1370

    Article  CAS  Google Scholar 

  32. Tao G, Willie SN, Sturgeon RE (1998) Analyst 123:1215–1218

    Article  PubMed  CAS  Google Scholar 

  33. Nóbrega JA, Santos MC, De Sousa RA, Cadore S, Barnes RM, Tatro M (2006) Spectrochim Acta B 61:465–495

    Article  Google Scholar 

  34. Torres DP, Vieira MA, Ribeiro AS, Curtius AJ (2005) J Anal Atom Spectrom 20:289–294

    Article  Google Scholar 

  35. Scriver C, Kan M, Willie S, Soo C, Birnboim H (2005) Anal Bional Chem 381:1460–1466

    Article  CAS  Google Scholar 

  36. Kan M, Willie SN, Scriver C, Sturgeon RE (2006) Talanta 68:1259–1263

    Article  CAS  Google Scholar 

Download references

Acknowledgement

M. A. Vieira and A.J. Curtius are grateful to the Conselho Nacional de Pesquisas e Desenvolvimento Tecnológico (CNPq) for a research scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph E. Sturgeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieira, M.A., Ribeiro, A.S., Curtius, A.J. et al. Determination of total mercury and methylmercury in biological samples by photochemical vapor generation. Anal Bioanal Chem 388, 837–847 (2007). https://doi.org/10.1007/s00216-007-1194-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1194-2

Keywords

Navigation