Skip to main content
Log in

Measuring Number of Free Radicals and Evaluating the Purity of Di(phenyl)-(2,4,6-trinitrophenyl)iininoazaniuin [DPPH] Reagents by Effective Magnetic Moment Method

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium [DPPH] is widely used as a standard for measuring the number of free radicals. Here, we evaluated the number of free radicals of “DPPH” reagents from three manufacturers by effective magnetic moment method. Interestingly, the reagents from different manufacturers had varying temperature dependencies for both magnetic moment and g-value at low temperatures. As a result, the maximum relative difference among the three reagents on the number of free radicals per unit mass was 20%. Carbon hydrogen nitrogen (CHN) analyses, highresolution EPR measurements, FT-IR measurement, and NMR measurement confirmed that a major component of only one among the three reagents was “pure” DPPH. The evaluated purity based on free radical content was 0.998 kg kg–1 with expanded uncertainty of 0.036 kg kg–1. The other two reagents were found to be contaminated by several % of benzene in the DPPH crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, “Analytical Chemistry: An Introduction”, 7th ed., 2000, Saunders College Publishing, A Division of Harcourt College Publishers, Orlando, FL.

    Google Scholar 

  2. M. J. T. Milton and T. J. Quinn, Metrologia, 2001, 38, 289.

    Article  CAS  Google Scholar 

  3. N. Matsumoto and K. Kato, Metrologia, 2012, 49, 530.

    Article  CAS  Google Scholar 

  4. N. Matsumoto and T. Shimosaka, Accred. Quality Assur., 2015, 20, 115.

    Article  Google Scholar 

  5. N. Matsumoto and T. Shimosaka, J. Appl. Phys., 2015, 117, 17E114.

    Article  Google Scholar 

  6. N. Matsumoto and T. Shimosaka, Anal. Sci., 2017, 33, 1059.

    Article  CAS  PubMed  Google Scholar 

  7. N. Matsumoto, Bunseki, 2016, 63.

    Google Scholar 

  8. T. Kikuchi, K. Kikugawa, and T. Kato, Chem. Pharm. Bull., 1980, 28, 2089.

    Article  Google Scholar 

  9. W. Brand-Williams, M. E. Cuvelier, and C. Berset, Food Sci. Technol LWT, 1995, 28, 25.

    Article  CAS  Google Scholar 

  10. D. Sanna, G. Delogu, M. Mulas, M. Schirra, and A. Fadda, Food Anal. Methods, 2012, 5, 759.

    Article  Google Scholar 

  11. E. V. Piletska, S. S. Piletsky, M. J. Whitcombe, I. Chianella, and S. A. Piletsky, Anal. Chem., 2012, 84, 2038.

    Article  CAS  PubMed  Google Scholar 

  12. P. Nagaraja, N. Aradhana, A. Suma, A. Shivakumar, and N. A. Chamaraja, Anal. Sci., 2014, 30, 251.

    Article  CAS  PubMed  Google Scholar 

  13. T. Shimamura, Y. Sumikura, T. Yamazaki, A. Tada, T. Kashiwagi, H. Ishikawa, T. Matsui, N. Sugimoto, H. Akiyama, and H. Ukeda, Anal. Sci., 2014, 30, 717.

    Article  CAS  PubMed  Google Scholar 

  14. I. Nakanishi, K. Ohkubo, K. Imai, M. Kamibayashi, Y. Yoshihashi, K. Matsumoto, K. Fukuhara, K. Terada, S. Itoh, T. Ozawa, and S. Fukuzumi, Chem. Commun., 2015, 57, 8311.

    Article  Google Scholar 

  15. D. Li, J. Jiang, D. Han, X. Yu, K. Wang, S. Zang, D. Lu, A. Yu, and Z. Zhang, Anal. Chem., 2016, 88, 3885.

    Article  CAS  PubMed  Google Scholar 

  16. L. Wang, W. Ma, S. Gan, D. Han, Q. Zhang, and L. Niu, Anal. Chem., 2014, 86, 10171.

    Article  CAS  PubMed  Google Scholar 

  17. D. B. Hunsaker, Jr. and G. H. Schenk, Talanta, 1983, 30, 475.

    Article  CAS  PubMed  Google Scholar 

  18. The Society of Electron Spin Science and Technology, “Introduction to Electron Spin Science and Technology”, 2010, Chap. 5, Sangyo-tosho Co. Ltd., Tokyo.

    Google Scholar 

  19. K. Komaguchi, T. Maruoka, H. Nakano, I. Imae, Y. Ooyama, and Y. Harima, J. Phys. Chem. C, 2010, 114, 1240.

    Article  CAS  Google Scholar 

  20. K. Nakagawa, S. Minakawa, D. Sawamura, and H. Hara, Anal. Sci., 2017, 33, 1357.

    Article  CAS  PubMed  Google Scholar 

  21. J. Krzystek, A. Sienkiewicz, L. Pardi, and L. C. Brunei, J. Mag. Reson., 1997, 125, 207.

    Article  CAS  Google Scholar 

  22. B. Cage, A. Weekiey, L. C. Brunei, and N. S. Daiai, Anal. Chem., 1999, 71, 1951.

    Article  CAS  Google Scholar 

  23. R. Miyamoto, M. Iwaki, H. Mino, J. Harada, S. Itoh, and H. Oh-oka, Biochemistry, 2006, 45, 6306.

    Article  CAS  PubMed  Google Scholar 

  24. B. Rakvin, D. Žilić, N. S. Dalai, J. M. North, P. Cevc, D. Arčon, and K. Zadro, Spectrochim. Acta, Part A, 2004, 60, 1241.

    Article  CAS  Google Scholar 

  25. H. Takahashi, T. Okamoto, E. Ohmichi, and H. Ohta, Appl. Phys. Express, 2016, 9, 126701.

    Article  Google Scholar 

  26. M. Ikeya, Anal. Sci., 1989, 5, 5.

    Article  CAS  Google Scholar 

  27. M. Furusawa and M. Ikeya, Anal. Sci., 1988, 4, 649.

    Article  CAS  Google Scholar 

  28. J. P. Campbell, J. T. Ryan, P. R. Shrestha, Z. Liu, C. Vaz, J-H. Kim, V. Georgiou, and K. P. Cheung, Anal. Chem., 2015, 87, 4910.

    Article  CAS  PubMed  Google Scholar 

  29. H. Hirata, T. Kuyama, M. Ono, and Y. Shimoyama, J. Mag. Reson., 2003, 164, 233.

    Article  CAS  Google Scholar 

  30. T. Suzuki, J. Mag. Reson., 2015, 259, 95.

    Article  CAS  Google Scholar 

  31. ISO Guide 35-2006, “Reference Materials—General and Statistical Principles for Certification”, 3rd ed., 2006, International Organization for Standardization, Switzerland, 31.

    Google Scholar 

  32. R. T. Weidner and C. A. Whitmer, Phys. Rev., 1953, 91, 1279.

    Article  CAS  Google Scholar 

  33. D. E. Williams, J. Am. Chem. Soc., 1967, 89, 4280.

    Article  CAS  Google Scholar 

  34. N. Ohigashi and H. Inokuchi, Bull. Chem. Soc. Jpn., 1969, 42, 1212.

    Article  CAS  Google Scholar 

  35. T. Fujito, T. Enoki, H. Ohya-Nishiguchi, and Y. Deguchi, Chem. Lett., 1972, 557.

    Google Scholar 

  36. B. N. Misra and S. K. Gupta, Bull. Chem. Soc. Jpn., 1973, 46, 3067.

    Article  CAS  Google Scholar 

  37. R. Verlinden, P. Grobet, and L. Van Gerven, Chem. Phys. Lett., 1974, 27, 535.

    Article  CAS  Google Scholar 

  38. T. Yoshioka, H. Ohya-Nishiguchi, and Y. Deguchi, Bull. Chem. Soc. Jpn., 1974, 47, 430.

    Article  CAS  Google Scholar 

  39. W. Duffy, D. L. Strandburg, and J. F. Deck, J. Chem. Phys., 1978, 68, 2097.

    Article  CAS  Google Scholar 

  40. T. Fujito, Bull. Chem. Soc. Jpn., 1981, 54, 3110.

    Article  CAS  Google Scholar 

  41. N. D. Yodanov and A. Christova, Appl. Magn. Reson., 1993, 6, 341.

    Article  Google Scholar 

  42. N. D. Yodanov, Appl. Magn. Reson., 1996, 70, 339.

    Article  Google Scholar 

  43. D. Žilić, D. Pajić, M. Jurić, K. Molćanov, B. Rakvin, P. Planinić, and K. Zadro, J. Magn. Reson., 2010, 207, 34.

    Article  PubMed  Google Scholar 

  44. N. Itoh, T. Yamazaki, A. Sato, M. Numata, and A. Takatsu, Anal. Sci., 2014, 30, 471.

    Article  CAS  PubMed  Google Scholar 

  45. N. Itoh, A. Sato, T. Yamazaki, M. Numata, and A. Takatsu, Anal. Sci., 2013, 29, 1209.

    Article  CAS  PubMed  Google Scholar 

  46. H. Fisher, SpringerMaterials, 2.2.2 Nitrogen radicals, Landolt-Börnstein—Group II Molecules and Radicals 1 (Magnetic Properties of Free Radicals), ed. K.-H. Hellwege and A. M. Hellwege, 1965, Chapter DOI:10.1007/10201179_9, Springer-Verlag, Berlin Heidelberg.

  47. P. H. Rieger, “Electron Spin Resonance: Analysis and Interpretation”, 2007, RSC Publishing, Cambridge, 102.

    Google Scholar 

  48. C. Corvaja, “Electron Paramagnetic Resonance: A Practitioner’s Toolkit”, ed. M. Burustolon and E. Giamello, 2009, John Wiley & Sons, Inc., NJ.

  49. M. Kohno, “Electron Spin Resonance (in Japanese)”, 2003, Chap. 3, Ohmsha.

    Google Scholar 

  50. SDBSWeb: http://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology, Jan 2018).

  51. R. M. Silverstein, G. C. Bassler, and T. C. Morrill, “Spectroscopic Identification of Organic Compounds”, 5th ed., 1991, Chap. 3, John Wiley & Sons, Inc., New York.

    Google Scholar 

  52. F. Gerson and W. Huber, “Electron Spin Resonance Spectroscopy for Organic Radicals”, 2003, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 296.

    Book  Google Scholar 

  53. NIST Chemistry WebBook: Compilation prepared by the National Institute of Standard and Technology, http://webbook.nist.gov/chemistry/.

Download references

Acknowledgments

A major part of this work was conducted at the Institute for Molecular Science, National Institutes of Natural Sciences, supported by the Nanotechnology Platform Program (Molecule and Material Synthesis) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Part of the SQUID measurements was conducted at the AIST Nano- Processing Facility, supported by the Nanotechnology Platform Program of the same ministry. The authors would like to thank Dr. K. Yamazaki (AIST) for the NMR measurements. An Excel macro program formulated by Dr. T. Shimosaka (AIST) was used for data fitting of magnetic moment via least-squared method. This work was supported by JSPS KAKENHI Grant Number JP17K05918.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhii O. Matsumoto.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, N.O., Itoh, N. Measuring Number of Free Radicals and Evaluating the Purity of Di(phenyl)-(2,4,6-trinitrophenyl)iininoazaniuin [DPPH] Reagents by Effective Magnetic Moment Method. ANAL. SCI. 34, 965–971 (2018). https://doi.org/10.2116/analsci.18P120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P120

Keywords

Navigation