Skip to main content
Log in

Water treatment sludge in the production of red-ceramic bricks: effects on the physico-mechanical properties

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Water treatment plants generate sludge, which is mainly composed of inorganic minerals and a reduced fraction of organic matter. Even though the water treatment sludge (WTS) can be classified as non-inert and non-hazardous waste, there exists a clear interest in its potential valorization and reuse in other industrial sectors. This study presents the assessment of WTS, obtained after coagulation, flocculation, and decantation (using polyaluminum chloride coagulant), as raw material for the production of red ceramic bricks. Clay was substituted with sludge in the green mixture in ratios from 0 to 20 wt.%. The extrudability of the plastic mixture was adjusted after evaluating the rheological properties by applying an amplitude sweep test to prismatic bars produced with different sludge and moisture contents. The presence of sludge increases the stiffness of the green mixture, and more water is required for the extrusion of the ceramic products without any superficial or visual defects. The linear shrinkage was within the limits required for ceramic bricks, regardless of the sludge content. The results of the compressive strength and water absorption of the reduced-scale bricks also indicate that the inclusion of up to 20 wt.% of sludge in clay mixture is feasible for the production of red ceramics products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Di Bernardo L, Dantas ADB, Voltan PEN (2012) Métodos e Técnicas de Tratamento e Disposição dos Resíduos Gerados em Estações de Tratamento de Água, 1 ed. LDiBe, São Carlos

  2. Intituto Brasileiro de Geografia e Estatística (IBGE) (2008) Pesquisa Nacional de Saneamento Básico 2008. In: Ministério do Planejamento Desenvolvimento e Gestão (ed). Rio de Janeiro

  3. Agência Nacional de Águas (ANA) (2019) Manual de Usos Consuntivos da Água no Brasil. ANA, Brasília

  4. Ahmad (a) T, Ahmad K, Alam M, (2016) Characterization of water treatment plant’s sludge and its safe disposal options. Procedia Environ Sci 35:950–955. https://doi.org/10.1016/j.proenv.2016.07.088

    Article  Google Scholar 

  5. Richter CA (2001) Tratamento de Lodos de Estações de Tratamento de Água, 1 ed. Bluncher, São Paulo

  6. De Carvalho GS, Zhou JL, Li W, Long G (2019) Progress in manufacture and properties of construction materials incorporating water treatment sludge: A review. Resour Conserv Recycl 145:148–159. https://doi.org/10.1016/j.resconrec.2019.02.032

    Article  Google Scholar 

  7. Associação Brasileira de Normas Técnicas (ABNT) (2004) ABNT NBR 10004: Resíduos Sólidos - Classificação (Solid waste classification). Rio de Janeiro

  8. Dayton E, Basta NT (2001) Characterization of drinking water treatment residuals for use as a soil substitute. Water Environ Res 73:52–57

    Article  Google Scholar 

  9. Dharmappa HB, Hasia A, Hagare P (1997) Water treatment plant residuals management. Water Sci Technol 35:45–56. https://doi.org/10.1016/S0273-1223(97)00150-9

    Article  Google Scholar 

  10. Dassanayake KB, Jayasinghe GY, Surapaneni A, Hetherington C (2015) A review on alum sludge reuse with special reference to agricultural applications and future challenges. Waste Manag 38:321–335. https://doi.org/10.1016/j.wasman.2014.11.025

    Article  Google Scholar 

  11. Krewski D, Yokel RA, Nieboer E et al (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Heal - Part B Crit Rev 10:1–269. https://doi.org/10.1080/10937400701597766

    Article  Google Scholar 

  12. Turner T, Wheeler R, Stone A, Oliver I (2019) Potential alternative reuse pathways for water treatment residuals: remaining barriers and questions—a review. Water Air Soil Pollut. https://doi.org/10.1007/s11270-019-4272-0

    Article  Google Scholar 

  13. de Godoy LGG, Rohden AB, Garcez MR et al (2020) Production of supplementary cementitious material as a sustainable management strategy for water treatment sludge waste. Case Stud Constr Mater 12:e00329. https://doi.org/10.1016/j.cscm.2020.e00329

    Article  Google Scholar 

  14. de Andrade JJ, O, Possan E, ChiaradiaWenzel M, da Silva SR, (2019) Feasibility of using calcined water treatment sludge in rendering mortars: A technical and sustainable approach. Sustain. https://doi.org/10.3390/su11133576

    Article  Google Scholar 

  15. Tantawy MA (2015) Characterization and pozzolanic properties of calcined alum sludge. Mater Res Bull 61:415–421. https://doi.org/10.1016/j.materresbull.2014.10.042

    Article  Google Scholar 

  16. Hagemann SE, Gastaldini ALG, Cocco M et al (2019) Synergic effects of the substitution of Portland cement for water treatment plant sludge ash and ground limestone: Technical and economic evaluation. J Clean Prod 214:916–926. https://doi.org/10.1016/j.jclepro.2018.12.324

    Article  Google Scholar 

  17. Husillos Rodríguez N, Martínez-Ramírez S, Blanco-Varela MT et al (2011) Evaluation of spray-dried sludge from drinking water treatment plants as a prime material for clinker manufacture. Cem Concr Compos 33:267–275. https://doi.org/10.1016/j.cemconcomp.2010.10.020

    Article  Google Scholar 

  18. Huang CH, Wang SY (2013) Application of water treatment sludge in the manufacturing of lightweight aggregate. Constr Build Mater 43:174–183. https://doi.org/10.1016/j.conbuildmat.2013.02.016

    Article  Google Scholar 

  19. Wei YL, Lin YY (2009) Role of Fe compounds in light aggregate formation from a reservoir sediment. J Hazard Mater 171:111–115. https://doi.org/10.1016/j.jhazmat.2009.05.122

    Article  Google Scholar 

  20. Chen HJ, Der YM, Tang CW, Wang SY (2012) Producing synthetic lightweight aggregates from reservoir sediments. Constr Build Mater 28:387–394. https://doi.org/10.1016/j.conbuildmat.2011.08.051

    Article  Google Scholar 

  21. Qu Z, Dong G, Zhu S et al (2020) Recycling of groundwater treatment sludge to prepare nano-rod erdite particles for tetracycline adsorption. J Clean Prod 257:120. https://doi.org/10.1016/j.jclepro.2020.120462

    Article  Google Scholar 

  22. Ooi TY, Yong EL, Din MFM et al (2018) Optimization of aluminium recovery from water treatment sludge using Response Surface Methodology. J Environ Manage 228:13–19. https://doi.org/10.1016/j.jenvman.2018.09.008

    Article  Google Scholar 

  23. Benlalla A, Elmoussaouiti M, Dahhou M, Assafi M (2015) Utilization of water treatment plant sludge in structural ceramics bricks. Appl Clay Sci 118:171–177. https://doi.org/10.1016/j.clay.2015.09.012

    Article  Google Scholar 

  24. Xu Y, Yan C, Xu B et al (2014) The use of urban river sediments as a primary raw material in the production of highly insulating brick. Ceram Int 40:8833–8840. https://doi.org/10.1016/j.ceramint.2014.01.105

    Article  Google Scholar 

  25. Tartari R, Módenes AN, Pianaro SA, Díaz-Mora N (2011) Lodo gerado na estação de tratamento de água Tamanduá, Foz do Iguaçu, PR, como aditivo em argilas para cerâmica vermelha. Parte II: Incorporação do lodo em mistura de argilas para produção de cerâmica vermelha. Cerâmica 57:387–394. https://doi.org/10.1590/s0366-69132011000400003

    Article  Google Scholar 

  26. Da Silva EM, Morita DM, Lima ACM, Teixeira LG (2015) Manufacturing ceramic bricks with polyaluminum chloride (PAC) sludge from a water treatment plant. Water Sci Technol 71:1638–1645. https://doi.org/10.2166/wst.2015.132

    Article  Google Scholar 

  27. Raut SP, Ralegaonkar RV, Mandavgane SA (2011) Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks. Constr Build Mater 25:4037–4042. https://doi.org/10.1016/j.conbuildmat.2011.04.038

    Article  Google Scholar 

  28. Hegazy BE-DE, Fouad HA, Hassanain AM (2012) Incorporation of water sludge, silica fume, and rice husk ash in brick making. Adv Environ Res 1: 83–96. https://doi.org/10.12989/AER.2012.1.1.083

  29. Ramadan MA, Fouad HA, Hassanain AM et al (2008) Reuse of water treatment plant sludge in brick manufacturing. J Appl Sci Res 4:1223–1229

    Google Scholar 

  30. Weng CH, Lin DF, Chiang PC (2003) Utilization of sludge as brick materials. Adv Environ Res 7:679–685. https://doi.org/10.1016/S1093-0191(02)00037-0

    Article  Google Scholar 

  31. Monteiro SN, Alexandre J, Margem JI et al (2008) Incorporation of sludge waste from water treatment plant into red ceramic. Constr Build Mater 22:1281–1287. https://doi.org/10.1016/j.conbuildmat.2007.01.013

    Article  Google Scholar 

  32. Teixeira SR, De Souza SA, De Souza NR et al (2006) Effect of the addition of sludge from water treatment plants on the properties of structural ceramic material (Efeito da adição de lodo de estação de tratamento de água (ETA) nas propriedades de material cerâmico estrutural). Cerâmica 52:215–220

    Article  Google Scholar 

  33. Ramirez Zamora RM, Ayala FE, Garcia LC et al (2008) Optimization of the preparation conditions of ceramic products using drinking water treatment sludges. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng 43:1562–1568. https://doi.org/10.1080/10934520802293750

    Article  Google Scholar 

  34. Victoria AN (2013) Characterisation and performance evaluation of Water works sludge as bricks material. Int J Eng 3:8269

    Google Scholar 

  35. Cremades LV, Cusidó JA, Arteaga F (2018) Recycling of sludge from drinking water treatment as ceramic material for the manufacture of tiles. J Clean Prod 201:1071–1080. https://doi.org/10.1016/j.jclepro.2018.08.094

    Article  Google Scholar 

  36. Toya T, Nakamura A, Kameshima Y et al (2007) Glass-ceramics prepared from sludge generated by a water purification plant. Ceram Int 33:573–577. https://doi.org/10.1016/j.ceramint.2005.11.009

    Article  Google Scholar 

  37. Kizinievič O, Žurauskienė R, Kizinievič V, Žurauskas R (2013) Utilisation of sludge waste from water treatment for ceramic products. Constr Build Mater 41:464–473. https://doi.org/10.1016/j.conbuildmat.2012.12.041

    Article  Google Scholar 

  38. Sheng Q, Zhang HF, Wang CY et al (2018) Pollution and potential ecological risk assessment of heavy metal of the sludge in treatment plants in Beijing. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/186/3/012070

    Article  Google Scholar 

  39. Teixeira SR, Santos GTAA, Souza AE et al (2011) The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials. Appl Clay Sci 53:561–565. https://doi.org/10.1016/j.clay.2011.05.004

    Article  Google Scholar 

  40. Ahmad T, Ahmad K, Alam M (2017) Sludge quantification at water treatment plant and its management scenario. Environ Monit Assess. https://doi.org/10.1007/s10661-017-6166-1

    Article  Google Scholar 

  41. Mymrin V, Alekseev K, Fortini OM et al (2017) Water cleaning sludge as principal component of composites to enhance mechanical properties of ecologically clean red ceramics. J Clean Prod 145:367–373. https://doi.org/10.1016/j.jclepro.2016.12.141

    Article  Google Scholar 

  42. Ahmad T, Ahmad K, Alam M (2016) Sustainable management of water treatment sludge through 3’R’ concept. J Clean Prod 124:1–13. https://doi.org/10.1016/j.jclepro.2016.02.073

    Article  Google Scholar 

  43. Guilherme P, Ribeiro MJ, Labrincha JA (2009) Behaviour of different industrial ceramic pastes in extrusion process. Adv Appl Ceram 108:347–351. https://doi.org/10.1179/174367609X413874

    Article  Google Scholar 

  44. Händle F (2007) Extrusion in Ceramics, Manchester. Springer, New York

  45. Baran B, Ertürk T, Sarikaya Y, Alemdaroǧlu T (2001) Workability test method for metals applied to examine a workability measure (plastic limit) for clays. Appl Clay Sci 20:53–63. https://doi.org/10.1016/S0169-1317(01)00042-4

    Article  Google Scholar 

  46. Perrot A, Mélinge Y, Rangeard D et al (2012) Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheol Acta 51:743–754. https://doi.org/10.1007/s00397-012-0638-6

    Article  Google Scholar 

  47. Associaçao Brasileira de Normas Técnicas (2016) ABNT NBR 6457: Amostras de solo — Preparação para ensaios de compactação e ensaios de caracterização (Soil samples — Preparation for compactation and characterization tests)

  48. Owaid HM, Hamid R, Taha MR (2014) Influence of thermally activated alum sludge ash on the engineering properties of multiple-blended binders concretes. Constr Build Mater 61:216–229. https://doi.org/10.1016/j.conbuildmat.2014.03.014

    Article  Google Scholar 

  49. Associaçao Brasileira de Normas Técnicas (2004) ABNT NBR-10005: Procedimento para obtenção de lixiviado de resíduos sólidos (Procedure for obtention leaching extract of solid wastes).

  50. Associaçao Brasileira de Normas Técnicas (2004) ABNT NBR 10006: Procedimento para obtenção de extrato solubilizado de resíduos sólidos (Procedure for obtention of solubilized extraction of solid wastes).

  51. Zat T, Bandieira M, Sattler N et al (2021) Potential re-use of sewage sludge as a raw material in the production of eco- friendly bricks. J Environ Manage. https://doi.org/10.1016/j.jenvman.2021.113238

    Article  Google Scholar 

  52. Associaçao Brasileira de Normas Técnicas (2017) ABNT NBR 6459:2016 Versão Corrigida:2017. Solo - Determinação do limite de liquidez (Soil - Liquid limit determination)

  53. Associaçao Brasileira de Normas Técnicas (2016) ABNT NBR 7180:2016. Solo - Determinação do limite de plasticidade. (Soil - Plasticity limit determination).

  54. American Standard for Testing Materials  (ASTM) (2014) ASTM D5279 Dynamic Mechanical Properties: In Torsion. ASTM Stand 2–5. https://doi.org/10.1520/D5279-13.1

  55. Associaçao Brasileira de Normas Técnicas (2017) ABNT NBR 15270–2: Componentes cerâmicos. Parte 2: Blocos cerâmicos para alvenaria estrutural - Terminologia e requisitos (Ceramic components Part 2: Structural ceramic block, perforated block, load-bearing masonry - Terminology and requirements)

  56. Camacho JS, Fusco PB (1997) Structural masonry: application of small-scale modeling (in Portuguese). Tech Bol USP Polytech Sch BT/ PMI 9704:1–10

    Google Scholar 

  57. Simonetti Milani A, Lübeck A, Mohamad G et al (2021) Experimental investigation of small-scale clay blocks masonry walls with chases under compression. Constr Build Mater 273:121539. https://doi.org/10.1016/j.conbuildmat.2020.121539

    Article  Google Scholar 

  58. Associação Brasileira de Normas Técnicas (ABNT) (2017) ABNT NBR 15270–1 Componentes cerâmicos - Blocos e tijolos para alvenaria Parte 1: Requisitos (Ceramic components - Clay blocks and bricks for masonry Part 1: Requirements). Rio de Janeiro

  59. American Standard for Testing Materials (ASTM) (2018) Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics. Astm 1–17. https://doi.org/10.1520/C1239-13.Scope

  60. Wolff E, Schwabe WK, Conceição SV (2015) Utilization of water treatment plant sludge in structural ceramics. J Clean Prod 96:282–289. https://doi.org/10.1016/j.jclepro.2014.06.018

    Article  Google Scholar 

  61. Schiavo LSA, Mantas PQ, Segadães AM, Cruz RCD (2018) From dry pressing to plastic forming of ceramics: assessing the workability window. Constr Build Mater 189:594–600. https://doi.org/10.1016/j.conbuildmat.2018.09.015

    Article  Google Scholar 

  62. He H, Yue Q, Qi Y et al (2012) The effect of incorporation of red mud on the properties of clay ceramic bodies. Appl Clay Sci 70:67–73. https://doi.org/10.1016/j.clay.2012.09.022

    Article  Google Scholar 

  63. Qi Y, Yue Q, Han S et al (2010) Preparation and mechanism of ultra-lightweight ceramics produced from sewage sludge. J Hazard Mater 176:76–84. https://doi.org/10.1016/j.jhazmat.2009.11.001

    Article  Google Scholar 

  64. de Oliveira CN, Babisk MP, Vernilli F et al (2014) Characterization of a water clearing treatment residue and its application as clay ceramic addition. Mater Sci Forum 775–776:642–647

    Article  Google Scholar 

  65. Kizinievic V (2013) Utilisation of sludge waste from water treatment for ceramic products. Constr Build Mater 41:464–473. https://doi.org/10.1016/j.conbuildmat.2012.12.041

    Article  Google Scholar 

  66. American Standard for Testing Materials (ASTM) (2019) ASTM C216–19: Standard Specification for Building Brick (Solid Masonry Units Made From Clay or Shale)

  67. Cusidó JA, Cremades LV (2012) Environmental effects of using clay bricks produced with sewage sludge: leachability and toxicity studies. Waste Manag 32:1202–1208. https://doi.org/10.1016/j.wasman.2011.12.024

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful for the financial support of São Gabriel Saneamento S.A., as well as Pauluzzi Cerâmicas Santa Maria Ltda. The participation M.B. and T.Z. was sponsored by CAPES, and E.D.R. by the research fellowship PQ 309885/2020-5 by the Brazilian National Council for Scientific and Technological Development (CNPq), as well as L.H.J. The authors also wish to thank and acknowledge to the Universidade Federal de Santa Maria (UFSM), FATEC (Fundação de Apoio na Tecnologia e Ciência), Laboratory of Magnetism and Magnetic Materials (at UFSM), GEPPASV (Grupo de Estudos e Pesquisas em Pavimentação e Segurança Viária, ANP PETRO 5850.0106353.17.9), LMCC (Laboratorio de Materiais de Construção Civil), Ceramics Materials Institute from the Universidade de Caxias do Sul, as well as LINCE (Laboratório de Inovação em Cimentos Ecoeficientes at UFRGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich D. Rodríguez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandieira, M., Zat, T., Schuster, S.L. et al. Water treatment sludge in the production of red-ceramic bricks: effects on the physico-mechanical properties. Mater Struct 54, 168 (2021). https://doi.org/10.1617/s11527-021-01764-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01764-0

Keywords

Navigation