Skip to main content
Log in

Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We propose in this work to provide an efficient and simple extruder device able to evaluate the rheological and tribological behaviour of high yield stress fluids, such as extrudible materials. An extruder able to measure simultaneously both the friction force acting on the extruder wall and the total extrusion force is developed. Based on previous studies, an efficient and accurate method of data analysis is then proposed and applied in order to obtain both a flow curve and a tribological law. Experimental tests are performed on soft modelling clay, kaolin paste and cement-based materials. Results are compared to conventional rheometry measurements. This comparison helps to evaluate the accuracy of the proposed experimental device and procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams MJ, Briscoe BJ, Corfield GM, Lawrence CJ, Papathanasiou TD (1997) A finite element analysis of the squeeze flow of an elasto-plastic paste material. J Non-Newtonian Fluid Mech 71(1):41–57

    Article  CAS  Google Scholar 

  • Alfani R, Guerrini GL (2005) Rheological test methods for characterization of extrudable cement-based materials. Mater Struct 38(2):239–247

    Article  Google Scholar 

  • Avitzur B (1983) Handbook of metal forming processes. New York

  • Barnes EC, Wilson DI, Johns ML (2006) Velocity profiling inside a ram extruder using magnetic resonance (MR) techniques. Chem Eng Sci 61(5):1357–1367

    Article  CAS  Google Scholar 

  • Basterfield RA, Lawrence CJ, Adams MJ (2005) On the interpretation of orifice extrusion data for viscoplastic materials. Chem Eng Sci 60(10):2599–2607

    Article  CAS  Google Scholar 

  • Benbow JJ, Bridgwater J (1993) Paste flow and extrusion. Oxford

  • Benbow JJ, Jazayeri SH, Bridgwater J (1991) The flow of pastes through dies of complicated geometry. Powder Technol 65(1–3):393–401

    Article  CAS  Google Scholar 

  • Cheyne A, Barnes J, Wilson DI (2005) Extrusion behaviour of cohesive potato starch pastes: I. Rheological characterisation. J Food Eng 66(1):1–12

    Article  Google Scholar 

  • Dealy JM (1995) On the significance of pressure relaxations in capillary or slit flow. Rheol Acta 34(1):115–116

    Article  CAS  Google Scholar 

  • Doll G, Händle F, Spiessberger F (2007) Piston extruders. Extrusion in ceramics. In. Engineering Materials and Processes. Springer, Berlin, pp 259–273

    Google Scholar 

  • Engmann J, Servais C, Burbidge AS (2005) Squeeze flow theory and applications to rheometry: A review. J Non-Newtonian Fluid Mech 132(1–3):1–27

    Article  CAS  Google Scholar 

  • Estellé P, Lanos C, Perrot A (2008) Processing the Couette viscometry data using a Bingham approximation in shear rate calculation. J Non-Newtonian Fluid Mech 154(1):31–38

    Article  Google Scholar 

  • Estellé P, Lanos C, Perrot A, Servais C (2006) Slipping zone location in squeeze flow. Rheol Acta 45(4):444–448

    Article  Google Scholar 

  • Gibson AG (1988) Converging dies In: Collyer AA, Clegg DW (eds) Rheological measurements. Barking

  • Götz J, Zick K, Kreibich W (2003) Possible optimisation of pastes and the according apparatus in process engineering by MRI flow experiments. Chem Eng Process 42(7):517–534

    Article  Google Scholar 

  • Hill R (1950) Mathematical theory of plasticity. Oxford

  • Hoang VH, Melinge Y, Perrot A, Rangeard D (2010) Local properties of clay based materials under tribological testing. In: 6th World congress on particles technology, Nuremberg, Germany, p 00577

  • Horrobin DJ (1999) Theoretical aspects of paste extrusion. PhD dissertation, University of Cambridge, Cambridge

  • Horrobin DJ, Nedderman RM (1998) Die entry pressure drops in paste extrusion. Chem Eng Sci 53(18):3215–3225

    Article  CAS  Google Scholar 

  • Jay P, Magnin A, Piau JM (2002) Numerical simulation of viscoplastic fluid flows through an axisymmetric contraction. J Fluids Eng 124:700–705

    Article  Google Scholar 

  • Kobayashi S, Thomsen EG (1963) Upper- and lower-bound solutions to axisymmetric compression and extrusion problems. Int J Mech Sci 7:127–143

    Article  Google Scholar 

  • Li YY, Bridgwater J (2000) Prediction of extrusion pressure using an artificial neural network. Powder Technol 108(1):65–73

    Article  CAS  Google Scholar 

  • Liddel PV, Boger DV (1996) Yield stress measurements with the vane. J Non-Newtonian Fluid Mech 63(2–3):235–261

    Article  Google Scholar 

  • Mankar RB, Graczyk J, Gonzalvez-Alvarez A, Buggisch H (2004) Capillary rheometry studies on wall slip flow of pastes. In: XIVth international congress on rheology, Seoul, Korea, 22–27 August 2004, pp RE 43–41

  • Martin PJ, Wilson DI, Bonnett PE (2006) Paste extrusion through non-axisymmetric geometries: Insights gained by application of a liquid phase drainage criterion. Powder Technol 168(2):64–73

    Article  CAS  Google Scholar 

  • Mascia S, Patel MJ, Rough SL, Martin PJ, Wilson DI (2006) Liquid phase migration in the extrusion and squeezing of microcrystalline cellulose pastes. Eur J Pharm Sci 29(1):22–34

    Article  CAS  Google Scholar 

  • Mimoune M, Aouadja FZ (2004) Rheometrical exploitation of experimental results obtained from new simulation device of extrusion on clay paste. Mater Struct 37(3):193–201

    Article  CAS  Google Scholar 

  • Mitsoulis E, Delgadillo-Velazquez O, Hatzikiriakos SG (2007) Transient capillary rheometry: compressibility effects. J Non-Newtonian Fluid Mech 145(2):102–108

    Article  CAS  Google Scholar 

  • Mitsoulis E, Hatzikiriakos SG (2009) Steady flow simulations of compressible PTFE paste extrusion under severe wall slip. J Non-Newtonian Fluid Mech 157(1):26–33

    Article  CAS  Google Scholar 

  • Park H, Lim S, Laun H, Dealy J (2008) Measurement of pressure coefficient of melt viscosity: drag flow versus capillary flow. Rheol Acta 47(9):1023–1038

    Article  CAS  Google Scholar 

  • Perrot A, Lanos C, Estellé P, Melinge Y (2006) Ram extrusion force for a frictional plastic material: model prediction and application to cement paste. Rheol Acta 45(4):457–467

    Article  CAS  Google Scholar 

  • Perrot A, Lanos C, Melinge Y, Estellé P (2007) Mortar physical properties evolution in extrusion flow. Rheol Acta 46(8):1065–1073

    Article  CAS  Google Scholar 

  • Perrot A, Melinge Y, Rangeard D, Estellé P, Lanos C (2011) The back extrusion test as a technique for determining the rheological and tribological behaviour of yield stress fluids. Appl Rheol 21(5):53642

    Google Scholar 

  • Perrot A, Rangeard D, Melinge Y, Estellé P, Lanos C (2009) Extrusion criterion for firm cement-based materials. Appl Rheol 19(5):53042

    Google Scholar 

  • Rabideau BD, Moucheront P, Bertrand F, Rodts S, Roussel N, Lanos C, Coussot P (2010) The extrusion of a model yield stress fluid imaged by MRI velocimetry. J Non-Newtonian Fluid Mech 165(7–8):394–408

    Article  CAS  Google Scholar 

  • Rahman L, Rowe P, Cheyne A, Wilson DI (2002) Ram extrusion of potato starch dough through multi-holed dies. Food and Bioproducts Processing 80(1):12–19

    Article  Google Scholar 

  • Roussel N, Lanos C (2003) Plastic fluid flow parameters identification using a simple squeezing test. Appl Rheol 13:132

    CAS  Google Scholar 

  • Sherwood JD, Durban D (1996) Squeeze flow of a power-law viscoplastic solid. J Non-Newtonian Fluid Mech 62(1):35–54

    Article  CAS  Google Scholar 

  • Sherwood JD, Durban D (1998) Squeeze-flow of a Herschel–Bulkley fluid. J Non-Newtonian Fluid Mech 77(1):115–121

    Article  CAS  Google Scholar 

  • Srinivasan R, DeFord D, Shah SP (1999) The use of extrusion rheometry in the development of extruded fiber-reinforced cement composites. Concr Sci Eng 1(1):26–36

    Google Scholar 

  • Toplak T, Tabuteau H, de Bruyn JR, Coussot P (2007) Gravity draining of a yield-stress fluid through an orifice. Chem Eng Sci 62(23):6908–6913

    Article  CAS  Google Scholar 

  • Toutou Z, Roussel N, Lanos C (2005) The squeeze test: A tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability. Cem Concr Res 35(10):1891–1899

    Article  CAS  Google Scholar 

  • Wildman RD, Blackburn S, Benton DM, McNeil PA, Parker DJ (1999) Investigation of paste flow using positron emission particle tracking. Powder Technol 103(3):220–229

    Article  CAS  Google Scholar 

  • Yu AB, Bridgwater J, Burbidge AS, Saracevic Z (1999) Liquid maldistribution in particulate paste extrusion. Powder Technol 103(2):103–109

    Article  CAS  Google Scholar 

  • Zhou X, Li Z (2005a) Characterization of rheology of fresh fiber reinforced cementitious composites through ram extrusion. Mater Struct 38(1):17–24

    Article  Google Scholar 

  • Zhou XM, Li ZJ (2005b) Characterization rheology of fresh short fiber reinforced cementitious composite through capillary extrusion. J Mater Civil Eng 17(1):28–35

    Article  CAS  Google Scholar 

  • Zienkiewicz OC, Jain PC, Onate E (1977) Flow of solids during forming and extrusion: some aspects of numerical solutions. Int J Solids Struct 14:15–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnoud Perrot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrot, A., Mélinge, Y., Rangeard, D. et al. Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheol Acta 51, 743–754 (2012). https://doi.org/10.1007/s00397-012-0638-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0638-6

Keywords

Navigation