Skip to main content
Log in

Low-cost fluorinated diatomaceous earth polyurethane foam for the absorption of oil

  • Original research
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

In the present work, we intend to focus on the synthesis, characterization, and application of a high-performing hydrophobic and oleophilic polyurethane foam functionalized with diatomaceous earth and fluorosilane, which are eco-friendly and low-cost materials for their potential use as absorbents for hydrophobic materials. The scanning electron microscopic studies and thermogravimetric analysis showed that the surface-modified polyurethane has a significant micro–nano-structure and surface functionalization, and the water contact angle measurement showed an increase in hydrophobicity due to the fluorosilane-functionalized diatomaceous earth particles anchoring onto the polyurethane foam. Also, the thermogravimetric analysis revealed an increased thermal stability due to the surface functionalization. The novel fluorosilane—diatomaceous earth—polyurethane foam exhibited a silver mirror-like effect when immersed into water due to inherent hydrophobicity and had an enhanced absorption of oil and organic solvents compared to the unmodified polyurethane. This research presents the successful synthesis of surface-modified polyurethane for its suitability for oil absorption capacity for cleaning the oil pollutants from water and for organic solvents clean-up purposes.

Graphical abstract

Overview of the research approach, which represents stepwise synthesis of the polyurethane (PU) foam surface modified with diatomaceous earth (DE) and fluorosilane (FS) to form low-density and high-absorbing surface-functionalized PU foam exhibiting enhanced oil absorption making this novel composite as a potential candidate for crude oil clean-up and recovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. D.R. Joshi, N. Adhikari, An overview on common organic solvents and their toxicity. J. Pharm. Res. Int. 28(3), 1–18 (2019)

    Google Scholar 

  2. M. Adebajo, R. Frost, J. Kloprogge et al., Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J. Porous Mater. 10, 159–170 (2003)

    CAS  Google Scholar 

  3. A. Varela, G. Oliveira, F.G. Souza Jr., C.H.M. Rodrigues, M.A.S. Costa, New petroleum absorbers based on cardanolfurfuraldehyde magnetic nanocomposites. Polym. Eng. Sci. 53(1), 44–51 (2013)

    CAS  Google Scholar 

  4. A.A. Elhakeem, W. Elshorbagy, R. Chebbi, Oil spill simulation and validation in the Arabian (Persian) Gulf with special reference to the UAE coast. Water Air Soil Pollut. 184(1–4), 243–254 (2007)

    CAS  Google Scholar 

  5. N. Issa, S. Vempatti, Oil spills in the Arabian Gulf: a case study and environmental review. Environ. Nat. Resour. Res. 8(2), 144 (2018)

    Google Scholar 

  6. H.A. Harahsheha, Oil Spill Detection and Monitoring of Abu Dhabi Coastal Zone Using KOMPSAT-5 SAR Imagery. Int Arch Photogrammetry Remote Sens Spatial Inf Sci 8, 1–7 (2016)

    Google Scholar 

  7. M.M. Shriadah, Impacts of an oil spill on the marine environment of the United Arab Emirates along the Gulf of Oman. Mar. Pollut. Bull. 36(11), 876–879 (1998)

    CAS  Google Scholar 

  8. M. Bourgeois, K. Guth, R.D. Harbison. Information Resources in Toxicology (Fifth Edition), Chapter 21 - Chemicals: solvents, Academic Press, 2020, 221–228, ISBN 9780128137246.

  9. B. Doshi, M. Sillanpää, S. Kalliola, A review of bio-based materials for oil spill treatment. Water Res. 135, 262–277 (2018)

    CAS  Google Scholar 

  10. A. Cybulski, J. Trawczyński, Catalytic wet air oxidation of phenol over platinum and ruthenium catalysts. Appl. Catal. B 47(1), 1–13 (2004)

    CAS  Google Scholar 

  11. A. Cambiella, E. Ortea, G. Rios, J.M. Benito, C. Pazos, J. Coca, Treatment of oil-in-water emulsions: performance of a sawdust bed filter. J. Hazard. Mater. 131(1–3), 195–199 (2006)

    CAS  Google Scholar 

  12. P.C. Brandão, T.C. Souza, C.A. Ferreira, C.E. Hori, L.L. Romanielo, Removal of petroleum hydrocarbons from aqueous solution using sugarcane bagasse as adsorbent. J. Hazard. Mater. 175(1–3), 1106–1112 (2010)

    Google Scholar 

  13. T. Viraraghavan, G.N. Mathavan, Treatment of oil-in-water emulsions using peat. Oil Chem. Pollut. 4(4), 261–280 (1988)

    CAS  Google Scholar 

  14. A.L. Ahmad, S. Sumathi, B.H. Hameed, Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: a comparative study. Chem. Eng. J. 108(1–2), 179–185 (2005)

    CAS  Google Scholar 

  15. Y. Hozumi, T. Inaoka, T. Gomi, T. Goto, T. Uno, K. Rakutani. U.S. Patent No. 5,374,600. Washington, DC: U.S. Patent and Trademark Office (1994).

  16. L. Han, J. Zhu, J. Kang, Y. Liang, Y. Sun, Catalytic wet air oxidation of high-strength organic coking wastewater. Asia-Pac. J. Chem. Eng. 4(5), 624–627 (2009)

    CAS  Google Scholar 

  17. S. Keav, A. Martin, J. Barbier Jr., D. Duprez, Deactivation and reactivation of noble metal catalysts tested in the catalytic wet air oxidation of phenol. Catal. Today 151(1–2), 143–147 (2010)

    CAS  Google Scholar 

  18. M. Fingas, Oil Spill Science & Technology, 1st edn. (Elsevier, New Yok, 2011), pp. 303–337

    Google Scholar 

  19. A. Das, P. Mahanwar, A brief discussion on advances in polyurethane applications. Adv. Ind. Eng. Polym. Res. 3, 93–101 (2020)

    Google Scholar 

  20. E.K. Sam, J. Liu, X. Lv, Surface engineering materials of superhydrophobic sponges for oil/water separation: a review. Ind. Eng. Chem. Res. 60(6), 2353–2364 (2021)

    CAS  Google Scholar 

  21. H. Li, L. Liu, F. Yang, Oleophilic polyurethane foams for oil spill cleanup. Procedia Environ. Sci. 18, 528–533 (2013)

    CAS  Google Scholar 

  22. N.V. Gama, A. Ferreira, A. Barros-Timmons, Polyurethane foams: past, present, and future. Materials 11(10), 1841 (2018)

    Google Scholar 

  23. K. Sklenickova, S. Abbrent, M. Halecky et al., Biodegradability and ecotoxicity of polyurethane foams: a review. Crit. Rev. Environ. Sci. Technol. 1, 1–46 (2020)

    Google Scholar 

  24. A. Kemona, M. Piotrowska, polyurethane recycling and disposal: methods and prospects. Polymers (Basel) 12(8), 1752 (2020)

    CAS  Google Scholar 

  25. S. Singh, R. Jelinek, Solar-mediated oil-spill cleanup by a carbon dot-polyurethane sponge. Carbon 160, 196–203 (2020)

    CAS  Google Scholar 

  26. O. Guselnikova, A. Barras, A. Addad, E. Sviridova, S. Szunerits, P. Postnikov, R. Boukherroub, Magnetic polyurethane sponge for efficient oil adsorption and separation of oil from oil-in-water emulsions. Sep. Purif. Technol. 240, 116627 (2020)

    CAS  Google Scholar 

  27. T. Zhang, L. Kong, Y. Dai, X. Yue, J. Rong, F. Qiu, J. Pan, Enhanced oils and organic solvents absorption by polyurethane foams composites modified with MnO2 nanowires. Chem. Eng. J. 309, 7–14 (2017)

    CAS  Google Scholar 

  28. S. Mallakpour, V. Behranvand, Modification of polyurethane sponge with waste compact disc-derived activated carbon and its application in organic solvents/oil sorption. N. J. Chem. 44, 15609–15616 (2020)

    CAS  Google Scholar 

  29. H. Li, L. Liu, F. Yang, Hydrophobic modification of polyurethane foam for oil spill cleanup. Mar. Pollut. Bull. 64(8), 1648–1653 (2012)

    CAS  Google Scholar 

  30. S. Qiu, Y. Li, G. Li, Z. Zhang, Y. Li, T. Wu, Robust superhydrophobic sepiolite-coated polyurethane sponge for highly efficient and recyclable oil absorption. ACS Sustain. Chem. Eng. 7, 5560–5567 (2019)

    CAS  Google Scholar 

  31. H.J. Perera, H. Mortazavian, F.D. Blum, Surface properties of silane-treated diatomaceous earth coatings: effect of alkyl chain length. Langmuir 33(11), 2799–2809 (2017)

    CAS  Google Scholar 

  32. H.J. Perera, F.D. Blum. Alkyl chain modified diatomaceous earth superhydrophobic coatings. In 2018 Advances in science and engineering technology international conferences (ASET) (1–4). IEEE.

  33. H.J. Perera, F.D. Blum. Competitive adsorption on diatomaceous earth particles. In 2019 Advances in science and engineering technology international conferences (ASET) (1–4). IEEE (2019, March).

  34. H.J. Perera, B.K. Khatiwada, A. Paul, H. Mortazavian, F.D. Blum, Superhydrophobic surfaces with silane-treated diatomaceous earth/resin systems. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.44072

    Article  Google Scholar 

  35. F. Kucuk, S. Sismanoglu, Y. Kanbur, U. Tayfun, Optimization of mechanical, thermo-mechanical, melt-flow and thermal performance of TPU green composites by diatomaceous earth content. Clean. Eng. Technol. 4, 100251 (2021)

    Google Scholar 

  36. S. Ye, B. Wang, Y. Shi, B. Wang, Y. Zhang et al., Superhydrophobic and superelastic thermoplastic polyurethane/multiwalled carbon nanotubes porous monolith for durable oil/water separation. Compos. Commun. 21, 100378 (2020)

    Google Scholar 

  37. S. Pashaei, X.X.X. Siddaramaiah, A.A. Syed, Thermal degradation kinetics of polyurethane/organically modified montmorillonite clay nanocomposites by TGA. J. Macromol. Sci. Part A Pure Appl. Chem. 47(8), 777–783 (2010)

    CAS  Google Scholar 

  38. B.R. Sedai, S.H. Alavi, S.P. Harimkar, M. McCollum, J.F. Donoghue, F.D. Blum, Particle morphology dependent superhydrophobicity in treated diatomaceous earth/polystyrene coatings. Appl. Surf. Sci. 416, 947–956 (2017)

    CAS  Google Scholar 

  39. F. Kucuk, S. Sismanoglu, Y. Kanbur, U. Tayfun, Effect of silane-modification of diatomite on its composites with thermoplastic polyurethane. Mater. Chem. Phys. 256, 123683 (2020)

    CAS  Google Scholar 

  40. S. Davoudizadeh, M. Ghasemi, K. Khezrollah, S. Bahadorikhalil, Poly(styrene-co-butyl acrylate)/mesoporous diatomaceous earth mineral nanocomposites by in situ AGET ATRP. J. Therm. Anal. Calorim. 131, 2513–2521 (2018)

    CAS  Google Scholar 

  41. O. Oribayo, X. Feng, G.L. Rempel, Q. Pan, Synthesis of lignin-based polyurethane/graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery. Chem. Eng. J. 323, 191–202 (2017)

    CAS  Google Scholar 

  42. Z.C. Ng, R.A. Roslan, W.J. Lau, M. Gürsoy, M. Karaman, N. Jullok, A. Ismail, A green approach to modify surface properties of polyurethane foam for enhanced oil absorption. Polymers 12, 1883 (2020)

    CAS  Google Scholar 

  43. M. Farid, A. Purniawan, A. Rasyida, M. Ramadhani, S. Komariyah, Improvement of acoustical characteristics: wideband bamboo based polymer composite. IOP Conf Ser 223, 012021 (2017)

    Google Scholar 

  44. R. Dias, S. Rogéria, A. Eliane, O. Rodrigo, Porous biodegradable polyurethane nanocomposites: preparation, characterization, and biocompatibility tests. Mater. Res. 13(2), 211–218 (2010)

    CAS  Google Scholar 

  45. A. Azadeh, M.T. Khorasani, A. Behnamghader, B. Farsad, B. Shahin, Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay. Int. J. Nanomed. 6, 2375–2384 (2011)

    Google Scholar 

  46. I. Hamadneh, A. Alatawi, R. Zalloum, R. Albuqain, S. Alsotari, F.I. Khalili, A.H. Al-Dujaili, Comparison of Jordanian and standard diatomaceous earth as an adsorbent for removal of Sm (III) and Nd (III) from aqueous solution. Environ Sci Pollut Res Int. 26, 20969–20980 (2019)

    CAS  Google Scholar 

  47. B.R. Sedai, B.K. Khatiwada, H. Mortazavian, F.D. Blum, Development of superhydrophobicity in fluorosilane-treated diatomaceous earth polymer coatings. Appl. Surf. Sci. 386, 178–186 (2016)

    CAS  Google Scholar 

  48. A.R. Arianit, B. Pavlovski, P. Makreski, New optimized method for low-temperature hydrothermal production of porous ceramics using diatomaceous earth. Ceram. Int. 43(15), 12572–12578 (2017)

    Google Scholar 

  49. M. Judith, S. Silvana, O. Hugo, K. László, H. László, F. Éva, M. János, FTIR and FT-Raman spectroscopic study on polymer based high pressure digestion vessels. Croat. Chem. Acta 79, 497–501 (2006)

    Google Scholar 

  50. S. Pazokifard, S.M. Mirabedini, M. Esfandeh, S. Farrokhpay, Fluoroalkylsilane treatment of TiO2 nanoparticles in difference pH values: Characterization and mechanism. Adv. Powder Technol. 23(4), 428–436 (2012)

    CAS  Google Scholar 

  51. P.S. Brown, B. Bhushan, Bioinspired, roughness-induced, water and oil superphilic and super-phobic coatings prepared by adaptable layer-by-layer technique. Sci. Rep. 5, 14030 (2015)

    Google Scholar 

  52. V.T. Ambegoda, S.M. Egodage, F.D. Blum, M. Maddumaarachchi, Enhancement of hydrophobicity of natural rubber latex films using diatomaceous earth. J. Appl. Polym. Sci. 138, 50047 (2021)

    CAS  Google Scholar 

  53. K.Y. Law, Definitions for hydrophilicity, hydrophobicity and superhydrophobicity: getting the basics right. J. Phys. Chem. Lett. 5(4), 686–688 (2014)

    CAS  Google Scholar 

  54. Y. Zhu, D. Wang, L. Jiang, J. Jin, Recent progress in developing advanced membranes for emulsified oil/water separation. Asia Mater 6, e101 (2014)

    CAS  Google Scholar 

  55. R.N. Wenzel, Resistance of solid surfaces to wetting by water. In. Eng. Chem. 28, 988–994 (1936)

    CAS  Google Scholar 

  56. A. Martínez-Gómez, L. Silvia, G. Fernández, M. Teresa, F. Raquel, T. Pilar, G. Nuria, Long-term underwater hydrophobicity: exploring topographic and chemical requirements. ACS Omega 2(12), 8928–8939 (2017)

    Google Scholar 

  57. M. Lei, S. Yang, B. Hao, P.C. Ma, Ternary silicone sponge with enhanced mechanical properties for oil-water separation. Polym. Chem. 6, 5869 (2015)

    Google Scholar 

  58. T. Iline-Vul, S. Bretler, S. Cohen, I. Perelshtein, N. Perkas, A. Gedanken, S. Margel, Engineering of superhydrophobic silica microparticles and thin coatings on polymeric films by ultrasound irradiation. Mater Today Chem 21, 100520 (2021)

    CAS  Google Scholar 

  59. X. Li, J. Yang, J. Wang et al., A stable super-amphiphilic surface created from superhydrophobic silica/epoxy coating by low-temperature plasma-treatment. Surf. Eng. (2021). https://doi.org/10.1080/02670844.2021.1888214

    Article  Google Scholar 

  60. X. Gong, S. He, Highly durable superhydrophobic polydimethyl siloxane/ silica nanocomposite surfaces with food self-cleaning ability. ACS Omega 5, 4100–4108 (2020)

    CAS  Google Scholar 

  61. S.J. Farrokhi, H. Pakzad, M. Fakhri, A. Moosavi, Superhydrophobic home-made polyurethane sponges for versatile and cost-effective oil and water separation. Sep Pnurif Technol 276, 119240 (2021)

    Google Scholar 

  62. Z. Guo, B. Long, S. Gao, J. Luo, L. Wang, X. Huang, D. Wang, H. Xue, J. Gao, Carbon nanofiber based superhydrophobic foam composite for high performance oil/water separation. J Hazard Mater. 402, 123838 (2021)

    CAS  Google Scholar 

  63. N. Xiao, Y. Zhou, Z. Ling, J. Qiu, Synthesis of a carbon nanofiber/carbon foam composite from coal liquefaction residue for the separation of oil and water. Carbon 59, 530–536 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Abu Dhabi Department of Education and Knowledge (ADEK) and the authors would like to acknowledge ADEK for their financial support and thank Higher Colleges of Technology, Abu Dhabi Women’s Campus and Khalifa University, for extending their cooperation and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helanka J. Perera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perera, H.J., Goyal, A., Banu, H. et al. Low-cost fluorinated diatomaceous earth polyurethane foam for the absorption of oil. MRS Energy & Sustainability 9, 94–104 (2022). https://doi.org/10.1557/s43581-022-00022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43581-022-00022-2

Keywords

Navigation