Skip to main content
Log in

Corrosion assessment of an Al–Li–Ni–Sb–Ag base alloy in aqueous solutions

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

A corrosion assessment of as cast Al–Li–Ni–Sb–Ag alloy in 0.5 M NaCl and acid rain solutions using electrochemical techniques was performed. The macrostructure observed is composed of two of Al–Ni secondary phases formed by elongated grains and clusters of micro-rod formations of both Al3Ni (β, θ) and the AlSb (γ) phases, dispersed in the α–Al matrix. Li and Ag were incorporated in solid solution as well as the Ag3Al phase. Potentiodynamic results showed higher activity in the 0.5 M NaCl 100% solution than in the acid rain sample, wherein the alloy developed a protective corrosion product layer. Similarly, the long-term measurements showed Rp kinetic values of up to 5.5 kOhm cm2 initially, but decaying and stabilizing at around 2.5 kOhm cm2 immersed in 95 vol.% of NaCl solution. Corrosion mechanisms are discussed in terms of activation and finite diffusion, and an inductive mechanism in acid rain. Results were complemented by X-Ray, scanning electron microscopy SEM and EDS characterization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. A.M.A. Mohamed, F.H. Samuel, A.M. Samuel, H.W. Doty, S. Valtierra, Miner. Met. Mater. Soc. 39A, 490–501 (2008). https://doi.org/10.1007/s11661-007-9454-5

    Article  CAS  Google Scholar 

  2. J.-M. Lee, K.-H. Kim, H.-J. Kim, Y.-S. Ahn, in: Proceedings of the 12th International Conference on Aluminium Alloys, The Japan Institute of Light Metals, 1708–1713 (2010)

  3. C. Suwanpreecha, J. PerrinToinin, R.A. Michi, P. Pandee, D.C. Dunand, C. Limmaneevichitr, Acta Mater. 164, 334–346 (2019). https://doi.org/10.1016/j.actamat.2018.10.059

    Article  CAS  Google Scholar 

  4. C. Wang, Q. Wang, Z. Wang, H. Li, K. Nakajima, J. He, J. Cryst. Growth 310, 1256–1263 (2008). https://doi.org/10.1016/j.jcrysgro.2007.12.045

    Article  CAS  Google Scholar 

  5. Z. Zhang, E. Akiyama, Y. Watanabe, Y. Katada, K. Tsuzaki, Corros. Sci. 49, 2962–2972 (2007). https://doi.org/10.1016/j.corsci.2007.02.007

    Article  CAS  Google Scholar 

  6. Z. Gxowa-Penxa, P. Daswa, R. Modiba, M.N. Mathabathe, A.S. Bolokang, Mater. Chem. Phys. 259, 124027 (2021). https://doi.org/10.1016/j.matchemphys.2020.124027

    Article  CAS  Google Scholar 

  7. X.H. Wang, H.W. Wang, Z.J. Wei, C.M. Zou, J. Alloys Compd. 774, 364–369 (2019). https://doi.org/10.1016/j.jallcom.2018.09.331

    Article  CAS  Google Scholar 

  8. D. Casari, Y. Li, M.D. Sabatino, M.T. Giovanni, La Metall. Ital. 6, 37–40 (2016)

    Google Scholar 

  9. D. Liu, B. Yürekli, T. Ullsperger, G. Matthäus, L. Schade, S. Nolte, M. Rettenmayr, Mater. Des. 198, 109323 (2021). https://doi.org/10.1016/j.matdes.2020.109323

    Article  CAS  Google Scholar 

  10. O.S.I. Fayomi, I.G. Akande, J. Bio- Tribo-Corros. 5, 23 (2019). https://doi.org/10.1007/s40735-018-0214-4

    Article  Google Scholar 

  11. A.H. AboubakrMedjahed, M. Derradji, Yu. Tianfu, Y. Wang, Wu. Ruizhi, L. Hou, J. Zhang, X. Li, M. Zhang, Mater. Sci. Eng. A 718, 241–249 (2018). https://doi.org/10.1016/j.msea.2018.01.118

    Article  CAS  Google Scholar 

  12. G.B. HusnuGerengi, MineKurtay, J. Taiwan Inst. Chem. Eng. 58, 509–516 (2016). https://doi.org/10.1016/j.jtice.2015.05.023

    Article  CAS  Google Scholar 

  13. J. Beltrán-González, Y. Villamar-Barajas, G. Carbajal-De la Torre, A. Ruiz, M.A. Espinosa-Medina, MRS Adv. 6(34–35), 815–819 (2021). https://doi.org/10.1557/s43580-021-00148-4

    Article  CAS  Google Scholar 

  14. ASTM E407, Standard Practice for Microetching Metals and Alloys, Copyright © ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428–2959, United States. (1999)

  15. Z. Ding, Hu. Qiaodan, Lu. Wenquan, F. Yang, Y. Zhou, N. Zhang, S. Cao, Yu. Liao, J. Li, J. Mater. Sci. Technol. 54, 40–47 (2020)

    Article  CAS  Google Scholar 

  16. Yu. Liao, Hu. Qiaodan, Z. Ding, F. Yang, Lu. Wenquan, N. Zhang, S. Cao, J. Li, J. Mater. Sci. Technol. 69, 60–68 (2021). https://doi.org/10.1016/j.jmst.2020.08.005

    Article  CAS  Google Scholar 

  17. P. Yu, C.-J. Deng, N.-G. Ma, D.H.L. Ng, J. Mater. Res. 19, 1187–1196 (2004). https://doi.org/10.1557/JMR.2004.0154

    Article  CAS  Google Scholar 

  18. J. Qian, J. Li, J. Xiong, F. Zhang, X. Lin, Mater. Sci. Eng. A 550, 279–285 (2012)

    Article  CAS  Google Scholar 

  19. ASTM G102, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, Copyright © ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428–2959, United States. (1999)

  20. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous solutions (Pergamon Press, New York, 1966)

    Google Scholar 

Download references

Acknowledgments

The authors, thanks for their support of the Materials Degradation and the Foundry and Tribology laboratories of UMSNH, and the financial support thought the Research Project 2022 by the Coordination of Scientific Research of UMSNH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Espinosa-Medina.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merino-Duran, M.D., Bedolla-Jacuinde, A., la Torre, G.CD. et al. Corrosion assessment of an Al–Li–Ni–Sb–Ag base alloy in aqueous solutions. MRS Advances 7, 1054–1059 (2022). https://doi.org/10.1557/s43580-022-00411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00411-2

Navigation