Skip to main content
Log in

Corrosion Behavior of 2A97 Al–Li Alloy in Cl and SO42− Mixed Salt Spray

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A comprehensive evaluation was conducted using several investigative techniques to understand the corrosion characteristics and underlying mechanisms of 2A97 Al–Li alloy exposed to a marine atmosphere. These techniques included salt-spray (3.5 wt.% NaCl and 0.1 wt.% Na2SO4) assaying, gravimetric assessment of corrosion loss, macro- and microscopic morphological evaluations, x-ray photoelectron spectroscopic analysis, and electrochemical assessments. The study findings showed a declining trend for the corrosion propensity of the 2A97 Al–Li alloy. The accumulated corrosion by-products predominantly comprised compounds such as Al2O3 and Al(OH)3, complemented by trace constituents such as Li2O, LiOH, Li2CO3, Al-based chlorides and sulphates, and elemental Cu. Notably, the Al2O3 present in the corrosion by-product stratum exhibited considerable compactness, thereby curtailing the permeation of corrosive ions. Concurrently, the stable Li2CO3 film exhibited excellent corrosion-inhibition properties. The cyclic dissolution and reprecipitation of elemental Cu bolstered the adhesive strength between the corrosion product layer and alloy substrate, further mitigating the corrosion kinetics of the foundational material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.A. Moreto, C.E.B. Marino, W.W. Bose Filho, L.A. Rocha, and J.C.S. Fernandes, SVET, SKP and EIS Study of the Corrosion Behavior of High Strength Al and Al–Li Alloys Used in Aircraft Fabrication, Corros. Sci., 2014, 84, p 30–41. (in English)

    Article  CAS  Google Scholar 

  2. R. Grilli, M.A. Baker, J.E. Castle, B. Dunn, and J.F. Watts, Localized Corrosion of a 2219 Aluminium Alloy Exposed to a 3.5% NaCl Solution, Corros. Sci., 2010, 52(9), p 2855–2866. (in English)

    Article  CAS  Google Scholar 

  3. C.H. Feng, J. Yu, M. Hao, W.Y. Zhao, A.G. Li, and J.Z. Chen, Research Progress and Development Trend of Al–Li alloy, J. Aerosp. Mater., 2020, 40(1), p 1–11. (in English)

    Google Scholar 

  4. L. Yang, Q. Jiang, M. Zheng, B. Hou, and Y. Li, Corrosion Behavior of Mg-8Li-3Zn-Al Alloy in Neutral 3.5% NaCl Solution, J. Magnes. Alloy, 2016, 4(1), p 22–26. (in English)

    Article  CAS  Google Scholar 

  5. O.C. Gamboni, J.A. Moreto, L.H.C. Bonazzi, C.O.F.T. Ruchert, and W.W. Bose Filho, Effect of Salt-Water Fog on Fatigue Crack Nucleation of Al and Al–Li Alloys, Mater. Res, 2013, 17(1), p 250–254. (in English)

    Article  Google Scholar 

  6. L.I. Nyrkova, S.O. Osadchuk, S.Y. Kovalenko, A.V. Klymenko, and T.M. Labur, Influence of Heat Treatment on the Corrosion Resistance of Welded Joints of Aluminum Alloys of the Al-Mg-Si-Cu System, Mater. Sci., 2021, 56, p 642–648. (in English)

    Article  CAS  Google Scholar 

  7. Y.Y. Chen, Z.Q. Zheng, X.Y. Wei, Z.R. Pan, and S.C. Li, Intergranular Corrosion and Exfoliation Corrosion Behaviors of 2197Al–Li Alloy with Different Aging Treatments, Corros. Prot., 2010, 31(1), p 29–33. (in English)

    Google Scholar 

  8. Y. Ma, X. Zhou, W. Huang, G.E. Thompson, X. Zhang, C. Luo, and Z. Sun, Localized Corrosion in AA2099-T83 Al–Li Alloy: The Role of Intermetallic Particles, Mater. Chem. Phys., 2015, 161(5), p 201–210. (in English)

    Article  CAS  Google Scholar 

  9. C. Luo, S.P. Albu, and X.R. Zhou, Continuous and Discontinuous Localized Corrosion of a 2xxx Aluminum-Copper-Lithium Alloy in Sodium Chloride Solution, J. Alloys Compd., 2016, 658(2), p 61. (in English)

    Article  CAS  Google Scholar 

  10. F.L. Jin, Z. Zhang, N. Jiang, and C.Y. Tan, Localized Corrosion Mechanism of 2xxx-Series Al Alloy Containing S(Al2CuMg) and θ’(Al2Cu) Precipitates in 4% NaCl Solution at PH6.1, Mater. Chem. Phys., 2005, 91(2–3), p 325–329. (in English)

    Article  Google Scholar 

  11. J.F. Li, C.X. Li, Z.W. Peng, W.J. Chen, and Z.Q. Zheng, Corrosion Mechanism Associated with T1 and T2 Precipitates of Al–Cu–Li Alloys in NaCl Solution, J. Alloys Compd., 2008, 460(1-2), p 688–693. (in English)

    Article  CAS  Google Scholar 

  12. Z.Y. Wang, P. Zhang, X.S. Zhao, and S.X. Rao, The Corrosion Behavior of Al–Cu–Li Alloy in NaCl Solution, Coatings, 2022, 12(12), p 1899–1914. (in English)

    Article  Google Scholar 

  13. C. Luo, X.X. Zhang, X.R. Zhou, X.Y. Zhang, Z.H. Tang, F. Lu, and G.E. Thompson, Characterization of Localized Corrosion in an Al–Cu–Li Alloy, J. Mater. Eng. Perform., 2016, 25(5), p 1811–1819. (in English)

    Article  CAS  Google Scholar 

  14. E. Ghanbari, A. Saatchi, X.W. Lei, and D.D. Macdonald, Studies on Pitting Corrosion of Al–Cu–Li Alloys Part III: Passivation Kinetics of AA2098-T851 Based on the Point Defect Model, Materials, 2019, 12(12), p 1912. (in English)

    Article  CAS  Google Scholar 

  15. Y.L. Ma, X.M. Meng, W.J. Huang, and X.B. Zhang, Effect of Microstructure Inhomogeneity on Local Corrosion of AA2099-T8 Al–Li Alloy, Chin. J. Nonferrous Met., 2015, 25(3), p 611–617. (in English)

    CAS  Google Scholar 

  16. X.M. Meng, Y.L. Ma, W.J. Huang, H.Y. Zhang, H.P. Wu, and W.T. Xiao, Microstructure of a New Al–Li Alloy and its Role in Local Corrosion, Mater. Rev., 2014, 28(13), p 82–85. (in Chinese)

    CAS  Google Scholar 

  17. X. Zhang, X. Zhou, T. Hashimoto, J. Lindsay, O. Ciuca, C. Luo, Z. Sun, X. Zhang, and Z. Tang, The Influence of Grain Structure on the Corrosion Behaviour of 2A97-T3 Al–Cu–Li Alloy, Corros. Sci., 2017, 116, p 14–21. (in English)

    Article  CAS  Google Scholar 

  18. C. Luo, Z.H. Sun, Z.Z. Tang, and F. Lu, Comparison of 2297-T87 Al–Li Alloy for Atmospheric Corrosivity, Equip. Environ. Eng., 2020, 17(05), p 10–17. (in Chinese)

    Google Scholar 

  19. Q. Zhao, C. Guo, K. Niu, J. Zhao, Y. Huang, and X. Li, Long-Term Corrosion Behavior of the 7A85 Aluminum Alloy in an Industrial-Marine Atmospheric Environment, Mater. Res. Technol., 2021, 12, p 1350–1359. (in English)

    Article  CAS  Google Scholar 

  20. J.F. Li, Z.Q. Zheng, and W.D. Ren, Function Mechanism of Secondary Phase on Localized Corrosion of Al Alloy, Int. Mater. Rev., 2005, 19(2), p 81–83. (in English)

    CAS  Google Scholar 

  21. L.Y. Ye, X.M. Zhang, Y.W. Liu, Y.X. Du, and Z.H. Luo, Formation Mechanism of Gradient-Distributed Particles and Their Effects on Grain Structure in 01420 Al–Li Alloy, T. Nonferr. Metal. Soc., 2007, 11, p 1744–1749. (in English)

    Google Scholar 

  22. J.L. Yi, L. Chen, J. Chen, R.X. Zhu, S.L. Wu, and Y.Z. Song, Function Mechanism of Main Secondary Phases Generated by Alloying on Localized Corrosion of Al–Li Alloys, Corros. Prot, 2011, 32(10), p 822. (in English)

    CAS  Google Scholar 

  23. L.F. Hou, M. Raveggi, X.B. Chen, W.Q. Xu, K.J. Laws, Y.H. Wei, M. Ferry, and N. Birbilis, Investigating the Passivity and Dissolution of a Corrosion Resistant Mg−33 at.%Li Alloy in Aqueous Chloride Using Online ICP-MS, J. Electrochem. Soc., 2016, 163(6), p 324–329. (in English)

    Article  Google Scholar 

  24. X.M. Tan, P. Wang, D. Wang, A. Qian, and Q. Branch, Accelerated Aging Dynamic Rules of Aeronautic Organic Coating Based on Electrochemical Impedance, Equip. Environ. Eng., 2017, 14(1), p 5–8. (in Chinese)

    Google Scholar 

  25. Q.C. Zhao, L.Z. Luo, X.F. Li, X.F. Li, and Y. Su, Corrosion Behavior of 7A85 Aluminum Alloy In Two Typical Atmospheric Environments, Equip. Environ. Eng, 2020, 17(7), p 70–75. (in Chinese)

    Google Scholar 

  26. Z. Zhang, J. Gao, H. He, and X.G. Li, Influence of Atmospheric Environmental Factors on Weathering Performance of Aviation Organic Coatings, Paint. Coat. Ind, 2021, 51(6), p 57–62. (in English)

    Google Scholar 

  27. Y. Ma, X. Zhou, G.E. Thompson, T. Hashimoto, P. Thomson, and M. Fowles, Distribution of Inter Metallics in an AA2099-T8 Aluminium Alloy Extrusion, Mater. Chem. Phys., 2011, 126(1-2), p 46–53. (in English)

    Article  CAS  Google Scholar 

  28. P. Zhang and H.M. Chen, Structure and Properties of Al–Li Alloy After Different Artificial Ageing Regimes and Preliminary Tensile Deformation, Met. Sci. Heat Treat., 2022, 64(5-6), p 252–257. (in English)

    Article  CAS  Google Scholar 

  29. C. Luo, Q. Wang, and Z.H. Sun, Initial Corrosion Mechanism of 2A97 Al–Li alloy in Tropical Marine Atmospheric Environment, Corros. Prot, 2015, 36, p 49–54. (in English)

    Google Scholar 

  30. H.R. Zhou, X.G. Li, C.F. Dong, Corrosion Behavior of Aluminum Alloys in Simulated SO2 Polluted Atmospheric Environments, J. Aeronaut. Mater, 2008, 02, P 39–45. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Jiang, Zx., Chen, Jh. et al. Corrosion Behavior of 2A97 Al–Li Alloy in Cl and SO42− Mixed Salt Spray. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08886-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08886-2

Keywords

Navigation