Skip to main content
Log in

Progress in the synthesis, characterisation, property enhancement techniques and application of gold nanoparticles: A review

  • Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Gold nanoparticles have been the solution to various hurdles today's scientific fraternity faces. Interestingly, reducing its size (1–100 nm) shows potential improvement in its chemical, physical and optical properties, suggesting its remarkable application in biopharmaceuticals, biosensors, photothermal therapy and chemotherapy, optical imaging and theranostics. This review aims to summarise the nuances associated with the synthesis (physical and chemical) and application of this remarkable material for advanced technological development. Emphasis has been given to the existing green methods like synthesis from microorganisms (Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli etc.) and plant extracts (grapes, cumin seeds, soybeans, garlic, mangosteen etc.). This review also summarises the main characterisation methods (qualitative and quantitative), their limitations, parameters and materials involved (chemicals, raw materials and process conditions) that play a significant role in preparing gold nanoparticles. Further, the various properties like optical, structural, electronic and chemical have been discussed, along with the detailed detection process mechanism to substantiate the capabilities of these engineered nanoparticles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

On behalf of all authors, the corresponding author confirms that there are no any additional data.

References

  1. M. Homberger, U. Simon, On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Philos. Trans. R. Soc. 368, 1405–1453 (1915). https://doi.org/10.1098/rsta.2009.0275

    Article  CAS  Google Scholar 

  2. N. Mézailles et al., Gold(I) and gold(0) complexes of phosphinine-based macrocycles. Ange. Chem. Int. Ed. 38(21), 3194–3197 (1999). https://doi.org/10.1002/(SICI)1521-3773(19991102)38:21%3c3194::AID-ANIE3194%3e3.0.CO;2-O

    Article  Google Scholar 

  3. Nano gold properties. https://www.sepmag.eu/blog/properties-of-nano-gold. Accessed 27 Nov 2020

  4. L. Dykman, N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41(6), 2256–2282 (2012). https://doi.org/10.1039/c1cs15166e

    Article  CAS  Google Scholar 

  5. H. Raether, G. Hohler, E.A. Niekisch, Surface plasmons on smooth and rough surfaces and on gratings. Springer Tracts Mod. Phys. 111, 136 (1988). https://doi.org/10.1007/BFb0048317

    Article  Google Scholar 

  6. M. Sengani, A.M. Grumezescu, V.D. Rajeswari, Recent trends and methodologies in gold nanoparticle synthesis—a prospective review on drug delivery aspect. OpenNano 2, 37–46 (2017). https://doi.org/10.1016/j.onano.2017.07.001

    Article  Google Scholar 

  7. P. Pattnaik, Surface plasmon resonance: applications in understanding receptor-ligand interaction. Appl. Biochem. Biotechnol. 126(2), 79–92 (2005). https://doi.org/10.1385/abab:126:2:079

    Article  CAS  Google Scholar 

  8. S.E. Skrabalak et al., Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41(12), 1587–1595 (2008). https://doi.org/10.1021/ar800018v

    Article  CAS  Google Scholar 

  9. B.D. Chithrani, W.C.W. Chan, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7(6), 1542–1550 (2007). https://doi.org/10.1021/nl070363y

    Article  CAS  Google Scholar 

  10. B.D. Chithrani, A.A. Ghazani, W.C.W. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6(4), 662–668 (2006). https://doi.org/10.1021/nl052396o

    Article  CAS  Google Scholar 

  11. W. Jiang, B.Y.S. Kim, J.T. Rutka, W.C.W. Chan, Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3(3), 145–150 (2008). https://doi.org/10.1038/nnano.2008.30

    Article  CAS  Google Scholar 

  12. A.M. Alkilany, P.K. Nagaria, C.R. Hexel, T.J. Shaw, C.J. Murphy, M.D. Wyatt, Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6), 701–708 (2009). https://doi.org/10.1002/smll.200801546

    Article  CAS  Google Scholar 

  13. M.C. Arno et al., Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nat. Commun. 11(1), 1–9 (2020). https://doi.org/10.1038/s41467-020-15206-y

    Article  CAS  Google Scholar 

  14. J. Belloni, Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal. Today 113(3–4), 141–156 (2006). https://doi.org/10.1016/j.cattod.2005.11.082

    Article  CAS  Google Scholar 

  15. N.D. Burrows, S. Harvey, F.A. Idesis, C.J. Murphy, Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments. Langmuir 33(8), 1891–1907 (2017). https://doi.org/10.1021/acs.langmuir.6b03606

    Article  CAS  Google Scholar 

  16. J.C. Scaiano et al., Photochemical routes to silver and gold nanoparticles. Pure Appl. Chem. 81(4), 635–647 (2009). https://doi.org/10.1351/PAC-CON-08-09-11

    Article  CAS  Google Scholar 

  17. J.A. Sanabria-Cala et al., Gold nanoparticles formation mechanism by photochemical synthesis. Chem. Eng. Trans. 64, 403–408 (2018). https://doi.org/10.3303/CET1864068

    Article  Google Scholar 

  18. F. Mafuné, J.Y. Kohno, Y. Takeda, T. Kondow, H. Sawabe, Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J. Phys. Chem. B 105(22), 5114–5120 (2001). https://doi.org/10.1021/jp0037091

    Article  CAS  Google Scholar 

  19. G. Compagnini, A.A. Scalisi, O. Puglisi, C. Spinella, Synthesis of gold colloids by laser ablation in thiol-alkane solutions. J. Mater. Res. 19(10), 2795–2798 (2004). https://doi.org/10.1557/JMR.2004.0401

    Article  CAS  Google Scholar 

  20. V. Amendola, S. Polizzi, M. Meneghetti, Laser ablation synthesis of gold nanoparticles in organic solvents. J. Phys. Chem. B 110(14), 7232–7237 (2006). https://doi.org/10.1021/jp0605092

    Article  CAS  Google Scholar 

  21. D.V. Leff, L. Brandt, J.R. Heath, Synthesis and characterisation of hydrophobic, organically-soluble gold nanocrystals functionalised with primary amines. Langmuir 12(20), 4723–4730 (1996). https://doi.org/10.1021/la960445u

    Article  CAS  Google Scholar 

  22. H. Ma et al., Synthesis of silver and gold nanoparticles by a novel electrochemical method. ChemPhysChem 5(1), 68–75 (2004). https://doi.org/10.1002/cphc.200300900

    Article  CAS  Google Scholar 

  23. B.R. Gangapuram, R. Bandi, M. Alle, R. Dadigala, G.M. Kotu, V. Guttena, Microwave assisted rapid green synthesis of gold nanoparticles using Annona squamosa L peel extract for the efficient catalytic reduction of organic pollutants. J. Mol. Struct. 1167, 305–315 (2018). https://doi.org/10.1016/j.molstruc.2018.05.004

    Article  CAS  Google Scholar 

  24. J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951). https://doi.org/10.1039/DF9511100055

    Article  Google Scholar 

  25. G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241(105), 20–22 (1973). https://doi.org/10.1038/physci241020a0

    Article  CAS  Google Scholar 

  26. M. Shah et al., Gold nanoparticles: various methods of synthesis and antibacterial applications. Front. Biosci. Landmark 19(8), 1320–1344 (2014). https://doi.org/10.2741/4284

    Article  Google Scholar 

  27. M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 7, 801–802 (1994). https://doi.org/10.1039/C39940000801

    Article  Google Scholar 

  28. W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  29. C. Graf, D.L.J. Vossen, A. Imhof, A. Van Blaaderen, A general method to coat colloidal particles with silica. Langmuir 19(17), 6693–6700 (2003). https://doi.org/10.1021/la0347859

    Article  CAS  Google Scholar 

  30. K.S. Suslick, G.J. Price, Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. (1999). https://doi.org/10.1146/annurev.matsci.29.1.295

    Article  Google Scholar 

  31. L.P. Jiang, S. Xu, J.M. Zhu, J.R. Zhang, J.J. Zhu, H.Y. Chen, Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorg. Chem. 43(19), 5877–5883 (2004). https://doi.org/10.1021/ic049529d

    Article  CAS  Google Scholar 

  32. K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, Y. Yobiko, Formation of colloidal gold nanoparticles in an ultrasonic field: control of rate of gold(III) reduction and size of formed gold particles. Langmuir 17(25), 7717–7720 (2001). https://doi.org/10.1021/la010414l

    Article  CAS  Google Scholar 

  33. D. Čempel, M.T. Nguyen, Y. Ishida, T. Yonezawa, L -arginine-stabilized highly uniform Ag nanoparticles prepared in a microwave-induced plasma-in-liquid process (MWPLP). Bull. Chem. Soc. Jpn. 91(3), 362–367 (2018). https://doi.org/10.1246/bcsj.20170327

    Article  CAS  Google Scholar 

  34. S.K. Nune et al., Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J. Mater. Chem. 19(19), 2912–2920 (2009). https://doi.org/10.1039/b822015h

    Article  CAS  Google Scholar 

  35. J.Y. Song, H.K. Jang, B.S. Kim, Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 44(10), 1133–1138 (2009). https://doi.org/10.1016/j.procbio.2009.06.005

    Article  CAS  Google Scholar 

  36. S.S. Shankar, A. Ahmad, R. Pasricha, M. Sastry, Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13(7), 1822–1826 (2003). https://doi.org/10.1039/b303808b

    Article  CAS  Google Scholar 

  37. S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275(2), 496–502 (2004). https://doi.org/10.1016/j.jcis.2004.03.003

    Article  CAS  Google Scholar 

  38. T. Elavazhagan, K.D. Arunachalam, Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int. J. Nanomed. 6, 1265–1278 (2011). https://doi.org/10.2147/ijn.s18347

    Article  CAS  Google Scholar 

  39. J. Huang et al., Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology (2007). https://doi.org/10.1088/0957-4484/18/10/105104

    Article  Google Scholar 

  40. K.B. Narayanan, N. Sakthivel, Coriander leaf mediated biosynthesis of gold nanoparticles. Mater. Lett. 62(30), 4588–4590 (2008). https://doi.org/10.1016/j.matlet.2008.08.044

    Article  CAS  Google Scholar 

  41. M.R. Bindhu, M. Umadevi, Antibacterial activities of green synthesised gold nanoparticles. Mater. Lett. 120, 122–125 (2014). https://doi.org/10.1016/j.matlet.2014.01.108

    Article  CAS  Google Scholar 

  42. K. Amarnath, N.L. Mathew, J. Nellore, C.R.V. Siddarth, J. Kumar, Facile synthesis of biocompatible gold nanoparticles from Vites vinefera and its cellular internalisation against HBL-100 cells. Cancer Nanotechnol. 2(1–6), 121–132 (2011). https://doi.org/10.1007/s12645-011-0022-8

    Article  CAS  Google Scholar 

  43. G.S. Ghodake, N.G. Deshpande, Y.P. Lee, E.S. Jin, Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf. B 75(2), 584–589 (2010). https://doi.org/10.1016/j.colsurfb.2009.09.040

    Article  CAS  Google Scholar 

  44. K. Katti et al., Green nanotechnology from cumin phytochemicals: generation of biocompatible gold nanoparticles. Int. J. Green Nanotechnol.: Biomed. 1(1), B39 (2009). https://doi.org/10.1080/19430850902931599

    Article  Google Scholar 

  45. N.C. Sharma, S.V. Sahi, S. Nath, J.G. Parsons, J.L. Gardea-Torresdey, P. Tarasankar, Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ. Sci. Technol. 41(14), 5137–5142 (2007). https://doi.org/10.1021/es062929a

    Article  CAS  Google Scholar 

  46. S.F.A. Morais, M.G.A. Da Silva, S.M.P. Meneghetti, M.R. Meneghetti, Colloids based on gold nanoparticles dispersed in castor oil: synthesis parameters and the effect of the free fatty acid content. Comptes Rendus Chim. 18(4), 410–421 (2015). https://doi.org/10.1016/j.crci.2014.07.008

    Article  CAS  Google Scholar 

  47. A. Satyanarayana Reddy et al., Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J. Nanosci. Nanotechnol. 10(10), 6567–6574 (2010). https://doi.org/10.1166/jnn.2010.2519

    Article  CAS  Google Scholar 

  48. M.I. Husseiny, M.A. El-Aziz, Y. Badr, M.A. Mahmoud, Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta A 67(3–4), 1003–1006 (2007). https://doi.org/10.1016/j.saa.2006.09.028

    Article  CAS  Google Scholar 

  49. L. Du, H. Jiang, X. Liu, E. Wang, Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem. Commun. 9(5), 1165–1170 (2007). https://doi.org/10.1016/j.elecom.2007.01.007

    Article  CAS  Google Scholar 

  50. K. Kalishwaralal, V. Deepak, S. Ram Kumar Pandian, S. Gurunathan, Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresour. Technol. 100(21), 5356–5358 (2009). https://doi.org/10.1016/j.biortech.2009.05.051

    Article  CAS  Google Scholar 

  51. D.N. Correa-Llantén, S.A. Muñoz-Ibacache, M.E. Castro, P.A. Muñoz, J.M. Blamey, Gold nanoparticles synthesised by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb. Cell Fact. (2013). https://doi.org/10.1186/1475-2859-12-75

    Article  Google Scholar 

  52. P. Mukherjee et al., Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3(5), 461–463 (2002). https://doi.org/10.1002/1439-7633(20020503)3:5%3c461::AID-CBIC461%3e3.0.CO;2-X

    Article  CAS  Google Scholar 

  53. S.K. Das, C. Dickinson, F. Lafir, D.F. Brougham, E. Marsili, Synthesis, characterisation and catalytic activity of gold nanoparticles biosynthesised with Rhizopus oryzae protein extract. Green Chem. 14(5), 1322–1334 (2012). https://doi.org/10.1039/c2gc16676c

    Article  CAS  Google Scholar 

  54. A. Ahmad, S. Senapati, M.I. Khan, R. Kumar, M. Sastry, Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J. Biomed. Nanotechnol. 1(1), 47–53 (2006). https://doi.org/10.1166/jbn.2005.012

    Article  CAS  Google Scholar 

  55. A.R. Binupriya, M. Sathishkumar, K. Vijayaraghavan, S.I. Yun, Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J. Hazard. Mater. 177(1–3), 539–545 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.066

    Article  CAS  Google Scholar 

  56. T. Ogi, N. Saitoh, T. Nomura, Y. Konishi, Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. J. Nanopart. Res. 12(7), 2531–2539 (2010). https://doi.org/10.1007/s11051-009-9822-8

    Article  CAS  Google Scholar 

  57. G. Singaravelu, J.S. Arockiamary, V.G. Kumar, K. Govindaraju, A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf. B 57(1), 97–101 (2007). https://doi.org/10.1016/j.colsurfb.2007.01.010

    Article  CAS  Google Scholar 

  58. J. Xie, J.Y. Lee, D.I.C. Wang, Y.P. Ting, Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3(4), 672–682 (2007). https://doi.org/10.1002/smll.200600612

    Article  CAS  Google Scholar 

  59. M. Gericke, A. Pinches, Microbial production of gold nanoparticles. Gold Bull. 39(1), 22–28 (2006). https://doi.org/10.1007/BF03215529

    Article  CAS  Google Scholar 

  60. M. Agnihotri, S. Joshi, A.R. Kumar, S. Zinjarde, S. Kulkarni, Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater. Lett. 63(15), 1231–1234 (2009). https://doi.org/10.1016/j.matlet.2009.02.042

    Article  CAS  Google Scholar 

  61. K. Siva Kumar et al., Exploitation of anaerobic enriched mixed bacteria (AEMB) for the silver and gold nanoparticles synthesis. Colloids Surf. A 462, 264–270 (2014). https://doi.org/10.1016/j.colsurfa.2014.09.021

    Article  CAS  Google Scholar 

  62. F.Y. Qiao, J. Liu, F.R. Li, X.L. Kong, H.L. Zhang, H.X. Zhou, Antibody and DNA dual-labeled gold nanoparticles: stability and reactivity. Appl. Surf. Sci. 254(10), 2941–2946 (2008). https://doi.org/10.1016/j.apsusc.2007.10.046

    Article  CAS  Google Scholar 

  63. R.G. Nuzzo, D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105(13), 4481–4483 (1983). https://doi.org/10.1021/ja00351a063

    Article  CAS  Google Scholar 

  64. J.M. Abad, S.F.L. Mertens, M. Pita, V.M. Fernández, D.J. Schiffrin, Functionalisation of thioctic acid-capped gold nanoparticles for specific immobilisation of histidine-tagged proteins. J. Am. Chem. Soc. 127(15), 5689–5694 (2005). https://doi.org/10.1021/ja042717i

    Article  CAS  Google Scholar 

  65. C. Mangeney et al., Synthesis and properties of water-soluble gold colloids covalently derivatised with neutral polymer monolayers. J. Am. Chem. Soc. 124(20), 5811–5821 (2002). https://doi.org/10.1021/ja010796h

    Article  CAS  Google Scholar 

  66. D. Li, Q. He, Y. Cui, L. Duan, J. Li, Immobilisation of glucose oxidase onto gold nanoparticles with enhanced thermostability. Biochem. Biophys. Res. Commun. 355(2), 488–493 (2007). https://doi.org/10.1016/j.bbrc.2007.01.183

    Article  CAS  Google Scholar 

  67. M. Kumari et al., Physico-chemical condition optimisation during biosynthesis lead to development of improved and catalytically efficient gold nano particles. Sci. Rep. 6(1), 1–14 (2016). https://doi.org/10.1038/srep27575

    Article  CAS  Google Scholar 

  68. H.Y. Wu, M. Liu, M.H. Huang, Direct synthesis of branched gold nanocrystals and their transformation into spherical nanoparticles. J. Phys. Chem. B 110(39), 19291–19294 (2006). https://doi.org/10.1021/jp063711d

    Article  CAS  Google Scholar 

  69. V. Khare et al., Strong anion effects on gold nanoparticle formation in ionic liquids. J. Mater. Chem. 20(7), 1332–1339 (2010). https://doi.org/10.1039/b917467b

    Article  CAS  Google Scholar 

  70. H. Imam, K. Elsayed, M.A. Ahmed, R. Ramdan, Effect of experimental parameters on the fabrication of gold nanoparticles via laser ablation. Opt. Photon. J. 02(02), 73–84 (2012). https://doi.org/10.4236/opj.2012.22011

    Article  CAS  Google Scholar 

  71. S. Inasawa, M. Sugiyama, Y. Yamaguchi, Bimodal size distribution of gold nanoparticles under picosecond laser pulses. J. Phys. Chem. B 109(19), 9404–9410 (2005). https://doi.org/10.1021/jp0441240

    Article  CAS  Google Scholar 

  72. N. Zhao et al., Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir 24(3), 991–998 (2008). https://doi.org/10.1021/la702848x

    Article  CAS  Google Scholar 

  73. W.S. Coblenz, J.M. Dynys, R.M. Cannon, R.L. Coble, Initial stage solid state sintering models. a critical analysis and assessment. Mater. Sci. Res. 13, 141–157 (1980)

    CAS  Google Scholar 

  74. D. Ballestero et al., Effect of thermal treatments on the morphology, chemical state and lattice structure of gold nanoparticles deposited onto carbon structured monoliths. Colloids Surf. A 468, 140–150 (2015). https://doi.org/10.1016/j.colsurfa.2014.12.017

    Article  CAS  Google Scholar 

  75. P. Mukherjee et al., Synthesis of uniform gold nanoparticles using non-pathogenic bio-control agent: evolution of morphology from nano-spheres to triangular nanoprisms. J. Colloid Interface Sci. 367(1), 148–152 (2012). https://doi.org/10.1016/j.jcis.2011.08.085

    Article  CAS  Google Scholar 

  76. M.M. Alvarez, J.T. Khoury, T.G. Schaaff, M.N. Shafigullin, I. Vezmar, R.L. Whetten, Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 101(19), 3706–3712 (1997). https://doi.org/10.1021/jp962922n

    Article  CAS  Google Scholar 

  77. E.A. Coronado, E.R. Encina, F.D. Stefani, Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale. Nanoscale 3(10), 4042–4059 (2011). https://doi.org/10.1039/c1nr10788g

    Article  CAS  Google Scholar 

  78. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107(3), 668–677 (2003). https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  79. U. Kreibig, C. Fragstein, The limitation of electron mean free path in small silver particles. Z. Phys. 224(4), 307–323 (1969). https://doi.org/10.1007/BF01393059

    Article  CAS  Google Scholar 

  80. J.J. Storhoff, A.A. Lazarides, R.C. Mucic, C.A. Mirkin, R.L. Letsinger, G.C. Schatz, What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 122(19), 4640–4650 (2000). https://doi.org/10.1021/ja993825l

    Article  CAS  Google Scholar 

  81. G.L. Hornyak, C.J. Patrissi, C.R. Martin, Fabrication, characterisation, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell-Garnett limit. J. Phys. Chem. B 101(9), 1548–1555 (1997). https://doi.org/10.1021/jp962685o

    Article  CAS  Google Scholar 

  82. D. Gaspar et al., Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation. Sci. Rep. 3(1), 1–5 (2013). https://doi.org/10.1038/srep01469

    Article  CAS  Google Scholar 

  83. W. Qi, Size effect on the cohesive energy of nanoparticle experiment and simulation on functional nanomaterials view project statistical mechanics view project. J. Mater. Sci. Lett. (2002). https://doi.org/10.1023/A:1020904317133

    Article  Google Scholar 

  84. N. Chander et al., Size and concentration effects of gold nanoparticles on optical and electrical properties of plasmonic dye sensitised solar cells. Sol. Energy 109, 11–23 (2014). https://doi.org/10.1016/j.solener.2014.08.011

    Article  CAS  Google Scholar 

  85. R. Jin, G. Wu, Z. Li, C.A. Mirkin, G.C. Schatz, What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125(6), 1643–1654 (2003). https://doi.org/10.1021/ja021096v

    Article  CAS  Google Scholar 

  86. P. Pyykkö, Relativistic effects in structural chemistry. Chem. Rev. 88(3), 563–594 (1988). https://doi.org/10.1021/cr00085a006

    Article  Google Scholar 

  87. Q. Li, Z. Zhang, S.S. Haque, M. Zhang, L. Xia, Localised surface plasmon resonance effects by naturally occurring Chinese yam particles. J. Appl. Phys. 108(12), 123502 (2010). https://doi.org/10.1063/1.3520667

    Article  CAS  Google Scholar 

  88. G.A. Shafeev, E. Freysz, F. Bozon-Verduraz, Self-influence of a femtosecond laser beam upon ablation of Ag in liquids. Appl. Phys. A 78(3), 307–309 (2004). https://doi.org/10.1007/s00339-003-2357-4

    Article  CAS  Google Scholar 

  89. H. Huang, X. Yang, Synthesis of polysaccharide-stabilised gold and silver nanoparticles: a green method. Carbohydr. Res. 339(15), 2627–2631 (2004). https://doi.org/10.1016/j.carres.2004.08.005

    Article  CAS  Google Scholar 

  90. I.V. Gmoshinski et al., Nanomaterials and nanotechnologies: methods of analysis and control. Russ. Chem. Rev. 82(1), 48–76 (2013). https://doi.org/10.1070/RC2013V082N01ABEH004329/XML

    Article  Google Scholar 

  91. K.B. Narayanan, N. Sakthivel, Synthesis and characterisation of nano-gold composite using cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J. Hazard. Mater. 189(1–2), 519–525 (2011). https://doi.org/10.1016/j.jhazmat.2011.02.069

    Article  CAS  Google Scholar 

  92. P.C. Lin, S. Lin, P.C. Wang, R. Sridhar, Techniques for physicochemical characterisation of nanomaterials. Biotechnol. Adv. 32(4), 711–726 (2014). https://doi.org/10.1016/J.BIOTECHADV.2013.11.006

    Article  Google Scholar 

  93. E. Murugan, R. Rangasamy, Synthesis, characterisation, and heterogeneous catalysis of polymer-supported poly(propyleneimine) dendrimer stabilised gold nanoparticle catalyst. J. Polym. Sci. A 48(12), 2525–2532 (2010). https://doi.org/10.1002/pola.24028

    Article  CAS  Google Scholar 

  94. A. Annamalai, S.T. Babu, N.A. Jose, D. Sudha, C.V. Lyza, Biosynthesis and characterization of silver and gold nanoparticles using squeous leaf extraction of Phyllanthus amarus Schum. & Thonn. World Appl. Sci. J. 13(8), 1833–1840 (2011)

    CAS  Google Scholar 

  95. B. Akbari, P. Tavandasti, M. Zandrahimi, Particle size characterisation of nanoparticles—a practical approach. Iran. J. Mater. Sci. Eng. 8(2), 48–56 (2011)

    CAS  Google Scholar 

  96. V. Uskoković, Dynamic light scattering based microelectrophoresis: main prospects and limitations. J. Dispers. Sci. Technol. 33(12), 1762–1786 (2012). https://doi.org/10.1080/01932691.2011.625523

    Article  CAS  Google Scholar 

  97. T. Tsukuda, H. Tsunoyama, H. Sakurai, Aerobic oxidations catalysed by colloidal nanogold. Chemistry—Asian J. 6(3), 736–748 (2011). https://doi.org/10.1002/asia.201000611

    Article  CAS  Google Scholar 

  98. Q. Li, D. Tang, J. Tang, B. Su, J. Huang, G. Chen, Carbon nanotube-based symbiotic coaxial nanocables with nanosilica and nanogold particles as labels for electrochemical immunoassay of carcinoembryonic antigen in biological fluids. Talanta 84(2), 538–546 (2011). https://doi.org/10.1016/j.talanta.2011.01.063

    Article  CAS  Google Scholar 

  99. Q. Zhou, N. Liu, Z. Qie, Y. Wang, B. Ning, Z. Gao, Development of gold nanoparticle-based rapid detection kit for melamine in milk products. J. Agric. Food Chem. 59(22), 12006–12011 (2011). https://doi.org/10.1021/jf202919a

    Article  CAS  Google Scholar 

  100. F.K. Alanazi, A.A. Radwan, I.A. Alsarra, Biopharmaceutical applications of nanogold. Saudi Pharm J 18(4), 179–193 (2010). https://doi.org/10.1016/j.jsps.2010.07.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimal Das.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, D., Deepak, K.S. & Das, B. Progress in the synthesis, characterisation, property enhancement techniques and application of gold nanoparticles: A review. MRS Communications 12, 700–715 (2022). https://doi.org/10.1557/s43579-022-00216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00216-2

Keywords

Navigation