Skip to main content
Log in

Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Biosynthesis of spherical gold nanoparticles and gold nanoplates was achieved at room temperature and pH 2.8 when cell extract from the metal-reducing bacterium Shewanella algae was used as both a reducing and shape-controlling agent. Cell extract, prepared by sonicating a suspension of S. algae cells, was capable of reducing 1 mol/m3 aqueous AuCl4 ions into elemental gold within 10 min when H2 gas was provided as an electron donor. The time interval lapsed since the beginning of the bioreductive reaction was found to be an important factor in controlling the morphology of biogenic gold nanoparticles. After 1 h, there was a large population of well-dispersed, spherical gold nanoparticles with a mean size of 9.6 nm. Gold nanoplates with an edge length of 100 nm appeared after 6 h, and 60% of the total nanoparticle population was due to gold nanoplates with an edge length of 100–200 nm after 24 h. The yield of gold nanoplates prepared with S. algae extract was four times higher than that prepared with resting cells of S. algae. The resulting biogenic gold nanoparticle suspensions showed a large variation in color, ranging from pale pink to purple due to changes in nanoparticle morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  PubMed  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  PubMed  Google Scholar 

  • Chu HC, Kuo CH, Huang MH (2006) Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges. Inorg Chem 45:808–813

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos Jr DS, Alvarez-Puebla RA, Oliveira ON Jr, Aroca RF (2005) Controlling the size and shape of gold nanoparticles in fulvic acid colloidal solutions and their optical characterization using SERS. J Mater Chem 15:3045–3049

    Article  Google Scholar 

  • El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts Chem Res 34:257–264

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Tehuacanero S, José-Yacamán M (1999) Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. J Nanopart Res 1:397–407

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live Alfalfa plants. Nano Lett 2:397–401

    Article  CAS  ADS  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    Article  CAS  Google Scholar 

  • Jiang P, Zhou JJ, Li R, Gao Y, Sun TL, Zhao XW, Xiang YJ, Xie SS (2006) PVP-capped twinned gold plates from nanometer to micrometer. J Nanopart Res 8:927–934

    Article  CAS  Google Scholar 

  • Kan CX, Zhu XG, Wang GH (2006) Single-crystalline gold microplates: Synthesis, characterization, and thermal stability. J Phys Chem B 110:4651–4656

    Article  CAS  PubMed  Google Scholar 

  • Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archaea. Appl Environ Microbiol 67:3275–3279

    Article  CAS  PubMed  Google Scholar 

  • Kim F, Connor S, Song H, Kuykendall T, Yang PD (2004) Platonic gold nanocrystals. Angew Chem-Int Edit 43:3673–3677

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614

    Article  CAS  PubMed  ADS  Google Scholar 

  • Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl4 ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24–29

    CAS  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007a) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653

    Article  CAS  PubMed  Google Scholar 

  • Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007b) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53:186–192

    Article  CAS  Google Scholar 

  • Liu B, Xie J, Lee JY, Ting YP, Chen JP (2005) Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J Phys Chem B 109:15256–15263

    Article  CAS  PubMed  Google Scholar 

  • Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64:4607–4609

    CAS  PubMed  Google Scholar 

  • Millstone JE, Park S, Shuford KL, Qin LD, Schatz GC, Mirkin CA (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127:5312–5313

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Edit 40:3585–3588

    Article  CAS  Google Scholar 

  • Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  PubMed  Google Scholar 

  • Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649

    Article  CAS  PubMed  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488

    Article  CAS  PubMed  ADS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2005) Shape-controlled synthesis of gold and silver nanoparticles. Chem Mater 17:566–572

    Article  CAS  Google Scholar 

  • Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175

    Article  CAS  Google Scholar 

  • Xie JP, Lee JY, Wang DIC, Ting YP (2007) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3:672–682

    Article  CAS  PubMed  Google Scholar 

  • Zhang JH, Liu HY, Wang ZL, Ming NB (2007) Shape-selective synthesis of gold nanoparticles with controlled sizes, shapes, and plasmon Resonances. Adv Funct Mater 17:3295–3303

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a Grant-in-Aid for Scientific Research (B) (20360411) from the Ministry of Education, Science, Sports and Culture, Japan. We also thank Ms. Eri Kitahata from the Toray Research Center Inc., Shiga, Japan, for their assistance with TEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Konishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogi, T., Saitoh, N., Nomura, T. et al. Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. J Nanopart Res 12, 2531–2539 (2010). https://doi.org/10.1007/s11051-009-9822-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9822-8

Keywords

Navigation