Skip to main content
Log in

Research on the preparation and property of superhydrophobic surface with micro-nano ripple structure

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Superhydrophobic surfaces are widely used in various fields because of their excellent properties and are currently an important research hotspot. Here, we developed a simple method and successfully prepared a functional surface with superhydrophobic properties. The relationship between laser process parameters on the surface morphology and wettability properties of stainless steel mesh was systematically investigated, and the surface corrosion resistance, mechanical stability, and self-cleaning properties of superhydrophobic stainless steel mesh were explored. The results show that under laser ablation with optimal process parameters, the surface of the superhydrophobic SSM has a large number of laser-induced periodic micro-nano corrugated structures, which store a large amount of air in the structure to form a layer of air cushion, reducing the contact between the surface and the corrosion solution, improving the corrosion resistance of the SSM, and also showing excellent performance characteristics in terms of mechanical stability, time-sensitive, and self-cleaning performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. X. Zheng, Q. Zhang, J. Wang, Fabrication of super-hydrophobic magnetic Fe/SiO2 surface with tunable adhesion inspired by lotus leaf[J]. Micro & Nano Lett. 7(6), 561–563 (2012). https://doi.org/10.1049/mnl.2012.0335

    Article  CAS  Google Scholar 

  2. G. Xuefeng, J. Lei, Water-repellent legs of water striders. Nature 432, 36 (2004). https://doi.org/10.1038/432036a

    Article  CAS  Google Scholar 

  3. S. Pan, M. Chen, L. Wu, Smart superhydrophobic surface with restorable microstructure and self-healable surface chemistry. ACS Appl. Mater. Interfaces 12(4), 5157–5165 (2020). https://doi.org/10.1021/acsami.9b22693

    Article  CAS  Google Scholar 

  4. H. Ye, L. Zhu, W. Li et al., Constructing fluorine-free and cost-effective superhydrophobic surface with normal-alcohol-modified hydrophobic SiO2 nanoparticles. ACS Appl. Mater. Interfaces 9(1), 858–867 (2017). https://doi.org/10.1021/acsami.6b12820

    Article  CAS  Google Scholar 

  5. J. Li, D. Li, Y. Yang et al., A prewetting induced underwater superoleophobic or underoil (super) hydrophobic waste potato residue-coated mesh for selective efficient oil/water separation [J]. Green Chem. 18(2), 541–549 (2016). https://doi.org/10.1039/c5gc01818h

    Article  CAS  Google Scholar 

  6. Y. Li, B. Li, X. Zhao et al., Totally waterborne, nonfluorinated, mechanically robust, and self-healing superhydrophobic coatings for actual anti-icing. ACS Appl. Mater. Interfaces 10(45), 39391–39399 (2018). https://doi.org/10.1021/acsami.8b15061

    Article  CAS  Google Scholar 

  7. T. Yu, F. Halouane, D. Mathias et al., Preparation of magnetic, superhydrophobic / superoleophilic polyurethane sponge: separation of oil/water mixture and demulsification. Chem. Eng. J. 384, 123339–123347 (2020). https://doi.org/10.1016/j.cej.2019.123339

    Article  CAS  Google Scholar 

  8. H.R. Gao, R.Y. Wang, H.J. Sun et al., Preparations and characterizations of super-hydrophobic surfaces on Al alloys and their anti-icing properties. Materiali in tehnologije 52, 299–306 (2018). https://doi.org/10.17222/mit.2017.125

    Article  CAS  Google Scholar 

  9. Y. Zhu, A. Feng, C. Zhang et al., Research on preparation and water collection characteristics of bionic pattern surface for multi-order combination-multi-segment transport. Opt. Laser Technol. 156, 108482 (2022). https://doi.org/10.1016/j.optlastec.2022.108482

    Article  Google Scholar 

  10. X.N. Zhang, L. Gan, B. Sun et al., Bio-inspired manufacturing of superwetting surfaces for fog collection and anti-icing applications. Sci. China Technol. Sci. 65(9), 1975–1994 (2022). https://doi.org/10.1007/s11431-022-2101-9

    Article  Google Scholar 

  11. V.S. Saji, Superhydrophobic surfaces and coatings by electrochemical methods–a review. J. Adhesion Sci. Technol. (2022). https://doi.org/10.1080/01694243.2022.2031462

    Article  Google Scholar 

  12. Q. Liu, Y. Tang, W. Luo et al., Fabrication of superhydrophilic surface on copper substrate by electrochemical deposition and sintering process. Chin. J. Chem. Eng. 23(7), 1200–1205 (2015). https://doi.org/10.1016/j.cjche.2014.11.034

    Article  CAS  Google Scholar 

  13. Y. Zhang, Z. Zhang, J. Yang et al., Fabrication of superhydrophobic surface on stainless steel by two-step chemical etching. Chem. Phys. Lett. 797, 139567 (2022). https://doi.org/10.1016/j.cjche.2014.11.034

    Article  CAS  Google Scholar 

  14. S. Ge-Zhang, H. Yang, H. Ni et al., Biomimetic superhydrophobic metal/nonmetal surface manufactured by etching methods: a mini review. Front Bioeng Biotechnol (2022). https://doi.org/10.3389/fbioe.2022.958095

    Article  Google Scholar 

  15. Z. Buczko, K. Olkowicz, J. Krasucki et al., Superhydrophobic properties of aluminium produced by surface abrasive blasting, anodic oxidation and fatty acid impregnation. Trans IMF 99(2), 73–79 (2021). https://doi.org/10.1080/00202967.2021.1877473

    Article  CAS  Google Scholar 

  16. S.F. Ou, K.K. Wang, Y.C. Hsu, Superhydrophobic NiTi shape memory alloy surfaces fabricated by anodization and surface mechanical attrition treatment. Appl. Surf. Sci. 425, 594–602 (2017). https://doi.org/10.1016/j.apsusc.2017.07.038

    Article  CAS  Google Scholar 

  17. Y. Li, X. Zhu, X. Zhou et al., A facile way to fabricate a superamphiphobic surface. Appl. Phys. A Mater. Sci. Process 115(3), 765–770 (2014). https://doi.org/10.1007/s00339-014-8438-8

    Article  CAS  Google Scholar 

  18. L.S. Solaree, A. Monshi, H. Ghayour, A new approach for the fabrication of hydrophobic silica coatings on glass using sol–gel Method. Synth. React. Inorg. Met.-Org., Nano-Met. Chem. 45(12), 1769–1772 (2015). https://doi.org/10.1080/15533174.2013.872132

    Article  CAS  Google Scholar 

  19. W. Li, X. Tan, J. Zhu et al., Broadband antireflective and superhydrophobic coatings for solar cells[J]. Mater. Today Energy 12, 348–355 (2019). https://doi.org/10.1016/j.mtener.2019.03.006

    Article  Google Scholar 

  20. Y. Song, C. Wang, X. Dong et al., Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser. Opt. Laser Technol. 102, 25–31 (2018). https://doi.org/10.1016/j.optlastec.2017.12.024

    Article  CAS  Google Scholar 

  21. X. Bai, F. Chen, Recent advances in femtosecond laser-induced superhydrophobic surfaces. Acta. Optica Sinica 41(1), 0114003 (2021). https://doi.org/10.3788/AOS202141.0114003

    Article  Google Scholar 

  22. X. Li, Y. Jiang, Z. Zhang et al., Facile and environmentally-friendly fabrication of underwater superaerophobic and superaerophilic metallic surfaces through laser ablation and heat treatment. Coll. Surf. A: Physicochem. Eng. Aspects 621, 126547 (2021). https://doi.org/10.1016/j.colsurfa.2021.126547

    Article  CAS  Google Scholar 

  23. J. Huo, Q. Yang, J. Yong et al., Underwater Superaerophobicity/Superaerophilicity and unidirectional bubble passage based on the femtosecond laser-structured stainless steel mesh. Adv. Mater. Interfaces 7(14), 1902128 (2020). https://doi.org/10.1002/admi.201902128

    Article  CAS  Google Scholar 

  24. J. Wang, J. Xu, Z. Lian et al., Facile and green fabrication of robust microstructured stainless steel mesh for efficient oil/water separation via waterjet-assisted laser ablation. Coll. Surf. A: Physicochem. Eng. Aspects 643, 128703 (2022). https://doi.org/10.1016/j.colsurfa.2022.128703

    Article  CAS  Google Scholar 

  25. J. Wang, J. Xu, G. Chen et al., Reversible wettability between underwater superoleophobicity and superhydrophobicity of stainless steel mesh for efficient oil–water separation[J]. ACS Omega 6(1), 77–84 (2020). https://doi.org/10.1021/acsomega.0c03369

    Article  CAS  Google Scholar 

  26. Y. Ge, J. Cheng, X. Wang et al., Formation and properties of superhydrophobic Al coatings on steel. ACS Omega 6(28), 18383–18394 (2021). https://doi.org/10.1021/acsomega.1c02299

    Article  CAS  Google Scholar 

  27. A. Gong, Y. Zheng, Z. Yang et al., Spray fabrication of superhydrophobic coating on aluminum alloy for corrosion mitigation. Mater. Today Commun. 26, 101828 (2021). https://doi.org/10.1016/j.mtcomm.2020.101828

    Article  CAS  Google Scholar 

  28. J. Zheng, G. Qu, B. Yang et al., Facile preparation of robust superhydrophobic ceramic surfaces with mechanical stability, durability, and self-cleaning function. Appl. Surf. Sci. 576, 151875 (2022). https://doi.org/10.1016/j.apsusc.2021.151875

    Article  CAS  Google Scholar 

  29. W. Li, Y. Zhan, S. Yu, Applications of superhydrophobic coatings in anti-icing: theory, mechanisms, impact factors, challenges and perspectives. Prog. Org. Coat. 152, 106117 (2021). https://doi.org/10.1016/j.porgcoat.2020.106117

    Article  CAS  Google Scholar 

  30. M. Yu, X. Li, X. Tan et al., Fluorine-free preparation of superhydrophobic coating with anti-icing property, mechanical durability and self-cleaning effect. Soft Matter (2023). https://doi.org/10.1039/d2sm01265k

    Article  Google Scholar 

  31. S. Li, M. Cai, Y. Liu et al., S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr (VI): intermediate eco-toxicity analysis and mechanistic insights. Chin. J. Catal. 43(10), 2652–2664 (2022). https://doi.org/10.1016/S1872-2067(22)64106-8

    Article  CAS  Google Scholar 

  32. M. Cai, Y. Liu, K. Dong et al., A novel S-scheme heterojunction of Cd0. 5Zn0. 5S/BiOCl with oxygen defects for antibiotic norfloxacin photodegradation: performance, mechanism, and intermediates toxicity evaluation. J. Coll. Interface Sci. 629, 276–286 (2023). https://doi.org/10.1016/j.jcis.2022.08.136

    Article  CAS  Google Scholar 

  33. C. Wang, R. Yan, M. Cai et al., A novel organic/inorganic S-scheme heterostructure of TCPP/Bi12O17Cl2 for boosting photodegradation of tetracycline hydrochloride: kinetic, degradation mechanism, and toxic assessment. Appl. Surf. Sci. 610, 155346 (2023). https://doi.org/10.1016/j.apsusc.2022.155346

    Article  CAS  Google Scholar 

  34. M. Cai, Y. Liu, C. Wang et al., Novel Cd0. 5Zn0. 5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: degradation pathway, mechanism and toxicity assessment. Sep. Purif. Technol. 304, 122401 (2023). https://doi.org/10.1016/j.seppur.2022.122401

    Article  CAS  Google Scholar 

  35. S. Li, C. Wang, Y. Liu et al., S-scheme MIL-101 (Fe) octahedrons modified Bi2WO6 microspheres for photocatalytic decontamination of Cr (VI) and tetracycline hydrochloride: synergistic insights, reaction pathways, and toxicity analysis. Chem. Eng. J. 455, 140943 (2023). https://doi.org/10.1016/j.cej.2022.140943

    Article  CAS  Google Scholar 

  36. S. Li, M. Cai, C. Wang et al., Ta3N5/CdS core-shell S-scheme heterojunction nanofibers for efficient photocatalytic removal of antibiotic tetracycline and Cr (VI): performance and mechanism insights. Adv. Fiber Mater. (2023). https://doi.org/10.1007/s42765-022-00253-5

    Article  Google Scholar 

  37. S. Li, M. Cai, Y. Liu et al., Constructing Cd0. 5Zn0. 5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr (VI) reduction. Adv. Powder Mater. 2(1), 100073 (2023). https://doi.org/10.1016/j.apmate.2022.100073

    Article  Google Scholar 

  38. M. Cai, C. Wang, Y. Liu et al., Boosted photocatalytic antibiotic degradation performance of Cd0. 5Zn0. 5S/carbon dots/Bi2WO6 S-scheme heterojunction with carbon dots as the electron bridge. Sep. Purif. Technol. 300, 121892 (2022). https://doi.org/10.1016/j.seppur.2022.121892

    Article  CAS  Google Scholar 

  39. Y. Wu, X. Tan, Y. Wang et al., Nonfluorinated, transparent, and antireflective hydrophobic coating with self-cleaning function. Coll. Surf. A: Physicochem. Eng. Aspects 634, 127919 (2022). https://doi.org/10.1016/j.colsurfa.2021.127919

    Article  CAS  Google Scholar 

  40. R. Wu, S. Wu, H. Jiang et al., Study on corrosion resistance of superhydrophobic surface on aluminum alloy. Mater. Exp. 11(12), 2004–2009 (2021). https://doi.org/10.1166/mex.2021.2118

    Article  CAS  Google Scholar 

  41. C. Hu, X. Xie, K. Ren, A facile method to prepare stearic acid-TiO2/zinc composite coating with multipronged robustness, self-cleaning property, and corrosion resistance. J. Alloys Compd. 882, 160636 (2021). https://doi.org/10.1016/j.jallcom.2021.160636

    Article  CAS  Google Scholar 

  42. J. Zhang, H. Xu, J. Guo et al., A superhydrophobic self-cleaning and anti-Icing aluminum sheet fabricated by alkaline solution. Adv. Eng. Mater. 23(10), 2100347 (2021). https://doi.org/10.1002/adem.202100347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Wenzhou Science and Technology Bureau Major Science and Technology Special Project Grant NO. ZG2019002, the Wenzhou Science and Technology Bureau Major Science and Technology Special Project Grant NO. ZG2020029, and the Wenzhou University Rui’an Graduate College of Science and Technology Project No YC202212024.

Funding

The Wenzhou Science and Technology Bureau Major Science and Technology Special Project, NO. ZG2019002, Aixin Feng, the Wenzhou Science and Technology Bureau Major Science and Technology Special Project, NO. ZG2020029, Xiaoming Pan, and the Wenzhou University Rui’an Graduate College of Science and Technology Project, YC202212024, yunhu zhu

Author information

Authors and Affiliations

Authors

Contributions

YZ contributed to writing of the original draft, conceptualization, methodology, visualization, and investigation. YZ contributed to software and data curation. XP contributed to software and data curation. JY contributed to software and data curation. PZ contributed to software and data curation. AF contributed to supervision and validation.

Corresponding author

Correspondence to Aixin Feng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Feng, A., Pan, X. et al. Research on the preparation and property of superhydrophobic surface with micro-nano ripple structure. Journal of Materials Research 38, 3136–3150 (2023). https://doi.org/10.1557/s43578-023-01038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01038-1

Keywords

Navigation