Skip to main content
Log in

Bio-inspired manufacturing of superwetting surfaces for fog collection and anti-icing applications

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

As a century-old concept, superwettability has aroused the interest of researchers in the past decades, attributed to the discoveries of the mechanisms of special wetting phenomena in nature. Bio-inspired manufacturing of superwetting surfaces for fog collection and anti-icing applications has become mainstream research, potentially alleviating the problem of water shortage and ice accidents. Superwetting surfaces for fog collection and anti-icing applications involve a reverse process, in which the former gathers water spontaneously, while the latter repels water. Contrastive analysis of the two is essential for the comprehensive understanding of superhydrophilic/superhydrophobic surfaces and boosting their applications. Herein, wetting theories and basic mechanisms for fog collection and anti-icing are briefly introduced. Then, manufacturing methods of bionic structures and surfaces are systematically reviewed after discussing the typical organisms with superwettability. Finally, conclusions are drawn and prospects for future development are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li M, Li C, Blackman B R K, et al. Mimicking nature to control biomaterial surface wetting and adhesion. Int Mater Rev, 2022, 67: 658–681

    Article  Google Scholar 

  2. Sun H, Song Y, Zhang B, et al. Bioinspired micro- and nanostructures used for fog harvesting. Appl Phys A, 2021, 127: 461

    Article  Google Scholar 

  3. Zhang S, Huang J, Chen Z, et al. Bioinspired special wettability surfaces: From fundamental research to water harvesting applications. Small, 2017, 13: 1602992

    Article  Google Scholar 

  4. Hao C, Liu Y, Chen X, et al. Bioinspired interfacial materials with enhanced drop mobility: From fundamentals to multifunctional applications. Small, 2016, 12: 1825–1839

    Article  Google Scholar 

  5. Wan K, Gou X, Guo Z. Bio-inspired fog harvesting materials: Basic research and bionic potential applications. J Bionic Eng, 2021, 18: 501–533

    Article  Google Scholar 

  6. Zhu H, Guo Z, Liu W. Biomimetic water-collecting materials inspired by nature. Chem Commun, 2016, 52: 3863–3879

    Article  Google Scholar 

  7. Shi R, Tian Y, Wang L. Bioinspired fibers with controlled wettability: From spinning to application. ACS Nano, 2021, 15: 7907–7930

    Article  Google Scholar 

  8. Tian Y, Wang L. Bioinspired microfibers for water collection. J Mater Chem A, 2018, 6: 18766–18781

    Article  Google Scholar 

  9. Peethan A, Lawrence J, George S. Wettability contrast surfaces: Fabrication and applications. Int J Wettability Sci Technol, 2020, 3: 189–219

    Google Scholar 

  10. Zhu H, Huang Y, Lou X, et al. Beetle-inspired wettable materials: From fabrications to applications. Mater Today Nano, 2019, 6: 100034

    Article  Google Scholar 

  11. Huang C, Guo Z. Fabrications and applications of slippery liquid-infused porous surfaces inspired from nature: A review. J Bionic Eng, 2019, 16: 769–793

    Article  Google Scholar 

  12. Samaha M A, Gad-el-Hak M. Slippery surfaces: A decade of progress. Phys Fluids, 2021, 33: 071301

    Article  Google Scholar 

  13. Yan X T, Jin Y K, Chen X M, et al. Nature-inspired surface topography: Design and function. Sci China-Phys Mech Astron, 2020, 63: 224601

    Article  Google Scholar 

  14. Yu Z, Zhu T, Zhang J, et al. Fog harvesting devices inspired from single to multiple creatures: Current progress and future perspective. Adv Funct Mater, 2022, 2200359

  15. Jeevahan J, Chandrasekaran M, Britto Joseph G, et al. Superhydrophobic surfaces: A review on fundamentals, applications, and challenges. J Coat Technol Res, 2018, 15: 231–250

    Article  Google Scholar 

  16. Li Q, Guo Z. Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces. J Mater Chem A, 2018, 6: 13549–13581

    Article  Google Scholar 

  17. Wang Q, Yang F, Guo Z. The intrigue of directional water collection interface: Mechanisms and strategies. J Mater Chem A, 2021, 9: 22729–22758

    Article  Google Scholar 

  18. Wang C, Guo Z. A comparison between superhydrophobic surfaces (SHS) and slippery liquid-infused porous surfaces (SLIPS) in application. Nanoscale, 2020, 12: 22398–22424

    Article  Google Scholar 

  19. Zhang S, Huang J, Cheng Y, et al. Bioinspired surfaces with superwettability for anti-icing and ice-phobic application: Concept, mechanism, and design. Small, 2017, 13: 1701867

    Article  Google Scholar 

  20. Kreder M J, Alvarenga J, Kim P, et al. Design of anti-icing surfaces: Smooth, textured or slippery? Nat Rev Mater, 2016, 1: 15003

    Article  Google Scholar 

  21. Cheng Y, Zhang S, Liu S, et al. Fog catcher brushes with environmental friendly slippery alumina micro-needle structured surface for efficient fog-harvesting. J Cleaner Production, 2021, 315: 127862

    Article  Google Scholar 

  22. Liu B, Zhang K, Tao C, et al. Strategies for anti-icing: Low surface energy or liquid-infused? RSC Adv, 2016, 6: 70251–70260

    Article  Google Scholar 

  23. Kim P, Wong T S, Alvarenga J, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano, 2012, 6: 6569–6577

    Article  Google Scholar 

  24. Young T. An essay on the cohesion of fluids. Philos Trans R Soc Lond, 1805, 95: 65–87

    Google Scholar 

  25. Zhu H, Huang Y, Lou X, et al. Bioinspired superwetting surfaces for biosensing. View, 2021, 2: 20200053

    Article  Google Scholar 

  26. Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials. Adv Mater, 2008, 20: 2842–2858

    Article  Google Scholar 

  27. Su B, Tian Y, Jiang L. Bioinspired interfaces with superwettability: From materials to chemistry. J Am Chem Soc, 2016, 138: 1727–1748

    Article  Google Scholar 

  28. Wang S, Liu K, Yao X, et al. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem Rev, 2015, 115: 8230–8293

    Article  Google Scholar 

  29. Wei Y, Qi H, Gong X, et al. Specially wettable membranes for oil-water separation. Adv Mater Interfaces, 2018, 5: 1800576

    Article  Google Scholar 

  30. Wenzel R N. Resistance of solid surfaces to wetting by water. Ind Eng Chem, 1936, 8: 988–994

    Article  Google Scholar 

  31. Feng X, Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv Mater, 2006, 18: 3063–3078

    Article  Google Scholar 

  32. Li W, Zhan Y, Yu S. Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives. Prog Org Coatings, 2021, 152: 106117

    Article  Google Scholar 

  33. Lin X, Hong J. Recent advances in robust superwettable membranes for oil-water separation. Adv Mater Interfaces, 2019, 6: 1900126

    Article  Google Scholar 

  34. Cassie A, Baxter S. Wettability of porous surfaces. Trans Faraday Soc, 1944, 40: 546–551

    Article  Google Scholar 

  35. Guo P, Zheng Y, Wen M, et al. Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv Mater, 2012, 24: 2642–2648

    Article  Google Scholar 

  36. Furmidge C G L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J Colloid Sci, 1962, 4: 309–324

    Article  Google Scholar 

  37. Matsumoto T, Nogi K. Wetting in soldering and microelectronics. Annu Rev Mater Res, 2008, 38: 251–273

    Article  Google Scholar 

  38. Chaudhury M K, Whitesides G M. How to make water run uphill. Science, 1992, 256: 1539–1541

    Article  Google Scholar 

  39. Daniel S, Chaudhury M K, Chen J C. Fast drop movements resulting from the phase change on a gradient surface. Science, 2001, 291: 633–636

    Article  Google Scholar 

  40. Lorenceau L, Qur D. Drops on a conical wire. J Fluid Mech, 1999, 510: 29–45

    Article  MATH  Google Scholar 

  41. Zhang S, Li S, Zhang Z, et al. An environmentally friendly fluorine-free sandwich coating based on a nonwoven fabric for efficient unidirectional water transport. Chem Commun, 2021, 57: 12623–12626

    Article  Google Scholar 

  42. Biance A L, Chevy F, Clanet C, et al. On the elasticity of an inertial liquid shock. J Fluid Mech, 2006, 554: 47–66

    Article  MATH  Google Scholar 

  43. Liu Y, Moevius L, Xu X, et al. Pancake bouncing on superhydrophobic surfaces. Nat Phys, 2014, 10: 515–519

    Article  Google Scholar 

  44. Moevius L, Liu Y, Wang Z, et al. Pancake bouncing: Simulations and theory and experimental verification. Langmuir, 2014, 30: 13021–13032

    Article  Google Scholar 

  45. Vasileiou T, Gerber J, Prautzsch J, et al. Superhydrophobicity enhancement through substrate flexibility. Proc Natl Acad Sci USA, 2016, 113: 13307–13312

    Article  Google Scholar 

  46. Josserand C, Thoroddsen S T. Drop impact on a solid surface. Annu Rev Fluid Mech, 2016, 48: 365–391

    Article  MathSciNet  MATH  Google Scholar 

  47. Yarin A L. Drop impact dynamics: Splashing, spreading, receding, bouncing…. Annu Rev Fluid Mech, 2006, 1: 159–192

    Article  MathSciNet  MATH  Google Scholar 

  48. Xu L, Zhang W W, Nagel S R. Drop splashing on a dry smooth surface. Phys Rev Lett, 2005, 94: 184505

    Article  Google Scholar 

  49. Maitra T, Tiwari M K, Antonini C, et al. On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano Lett, 2014, 14: 172–182

    Article  Google Scholar 

  50. Schiaffino S, Sonin A A. Molten droplet deposition and solidification at low Weber numbers. Phys Fluids, 1997, 9: 3172–3187

    Article  Google Scholar 

  51. McKinley G H, Renardy M. Wolfgang von Ohnesorge. Phys Fluids, 2011, 23: 127101

    Article  Google Scholar 

  52. Liu F, Ghigliotti G, Feng J J, et al. Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. J Fluid Mech, 2014, 752: 39–65

    Article  Google Scholar 

  53. Tian J, Zhu J, Guo H Y, et al. Efficient self-propelling of small-scale condensed microdrops by closely packed ZnO nanoneedles. J Phys Chem Lett, 2014, 5: 2084–2088

    Article  Google Scholar 

  54. Enright R, Miljkovic N, Sprittles J, et al. How coalescing droplets jump. ACS Nano, 2014, 8: 10352–10362

    Article  Google Scholar 

  55. Liu X, Cheng P, Quan X. Lattice Boltzmann simulations for self-propelled jumping of droplets after coalescence on a superhydrophobic surface. Int J Heat Mass Transfer, 2014, 73: 195–200

    Article  Google Scholar 

  56. Wybraniec S, Stalica P, Spórna A, et al. Profiles of betacyanins in epidermal layers of grafted and light-stressed cacti studied by LC-DAD-ESI-MS/MS. J Agric Food Chem, 2010, 58: 5347–5354

    Article  Google Scholar 

  57. Méndez L P, Flores F T, Martín J D, et al. Physicochemical characterization of cactus pads from Opuntia dillenii and Opuntia ficus indica. Food Chem, 2015, 188: 393–398

    Article  Google Scholar 

  58. Ju J, Bai H, Zheng Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun, 2012, 3: 1247

    Article  Google Scholar 

  59. Gurera D, Bhushan B. Optimization of bioinspired conical surfaces for water collection from fog. J Colloid Interface Sci, 2019, 551: 26–38

    Article  Google Scholar 

  60. Song D, Bhushan B. Enhancement of water collection and transport in bioinspired triangular patterns from combined fog and condensation. J Colloid Interface Sci, 2019, 557: 528–536

    Article  Google Scholar 

  61. Yi S, Wang J, Chen Z, et al. Cactus-inspired conical spines with oriented microbarbs for efficient fog harvesting. Adv Mater Technol, 2019, 4: 1900727

    Article  Google Scholar 

  62. Li X, Yang Y, Liu L, et al. 3D-printed cactus-inspired spine structures for highly efficient water collection. Adv Mater Interfaces, 2020, 7: 1901752

    Article  Google Scholar 

  63. Bai F, Wu J, Gong G, et al. Biomimetic “cactus spine” with hierarchical groove structure for efficient fog collection. Adv Sci, 2015, 2: 1500047

    Article  Google Scholar 

  64. Blamires S J, Wu C C, Wu C L, et al. Uncovering spider silk nanocrystalline variations that facilitate wind-induced mechanical property changes. Biomacromolecules, 2013, 14: 3484–3490

    Article  Google Scholar 

  65. Humenik M, Scheibel T. Nanomaterial building blocks based on spider silk-oligonucleotide conjugates. ACS Nano, 2014, 8: 1342–1349

    Article  Google Scholar 

  66. Chen Y, Zheng Y. Bioinspired micro-/nanostructure fibers with a water collecting property. Nanoscale, 2014, 6: 7703–7714

    Article  Google Scholar 

  67. Porter D, Vollrath F. Silk as a biomimetic ideal for structural polymers. Adv Mater, 2009, 21: 487–492

    Article  Google Scholar 

  68. Hou L, Wang N, Wu J, et al. Bioinspired superwettability electrospun micro/nanofibers and their applications. Adv Funct Mater, 2018, 28: 1801114

    Article  Google Scholar 

  69. Zheng Y, Bai H, Huang Z, et al. Directional water collection on wetted spider silk. Nature, 2010, 463: 640–643

    Article  Google Scholar 

  70. Bai H, Ju J, Zheng Y, et al. Functional fibers with unique wettability inspired by spider silks. Adv Mater, 2012, 24: 2786–2791

    Article  Google Scholar 

  71. Gu Y, Yu L, Mou J, et al. Mechanical properties and application analysis of spider silk bionic material. e-Polymers, 2020, 20: 443–457

    Article  Google Scholar 

  72. Ju J, Zheng Y, Jiang L. Bioinspired one-dimensional materials for directional liquid transport. Acc Chem Res, 2014, 47: 2342–2352

    Article  Google Scholar 

  73. Stone A E C, Thomas D S G. Casting new light on late quaternary environmental and palaeohydrological change in the Namib Desert: A review of the application of optically stimulated luminescence in the region. J Arid Environ, 2013, 93: 40–58

    Article  Google Scholar 

  74. Henschel J R, Lancaster N. Gobabeb-50 years of Namib Desert research. J Arid Environ, 2013, 93: 1–6

    Article  Google Scholar 

  75. Seely M, Henschel J R, Hamilton III W J. Long-term data show behavioural fog collection adaptations determine Namib Desert beetle abundance. S Afr J Sci, 2005, 101: 570–572

    Google Scholar 

  76. Parker A R, Lawrence C R. Water capture by a desert beetle. Nature, 2001, 414: 33–34

    Article  Google Scholar 

  77. Chen H, Zhang P, Zhang L, et al. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature, 2016, 532: 85–89

    Article  Google Scholar 

  78. Kostal E, Stroj S, Kasemann S, et al. Fabrication of biomimetic fog-collecting superhydrophilic-superhydrophobic surface micropatterns using femtosecond lasers. Langmuir, 2018, 34: 2933–2941

    Article  Google Scholar 

  79. Zhang F, Guo Z. Bioinspired materials for water-harvesting: Focusing on microstructure designs and the improvement of sustainability. Mater Adv, 2020, 1: 2592–2613

    Article  Google Scholar 

  80. Huang Z X, Liu X, Wong S C, et al. A single step fabrication of bioinspired high efficiency and durable water harvester made of polymer membranes. Polymer, 2019, 183: 121843

    Article  Google Scholar 

  81. Klein-Paste A, Wåhlin J. Wet pavement anti-icing—A physical mechanism. Cold Regions Sci Tech, 2013, 96: 1–7

    Article  Google Scholar 

  82. Mohd G, Majid K, Lone S. Multiscale janus surface structure of trifolium leaf with atmospheric water harvesting and dual wettability features. ACS Appl Mater Interfaces, 2022, 14: 4690–4698

    Article  Google Scholar 

  83. Feng S, Delannoy J, Malod A, et al. Tip-induced flipping of droplets on Janus pillars: From local reconfiguration to global transport. Sci Adv, 2020, 6: b4540

    Article  Google Scholar 

  84. Cheng Y, Wang M, Sun J, et al. Rapid and persistent suction condensation on hydrophilic surfaces for high-efficiency water collection. Nano Lett, 2021, 21: 7411–7418

    Article  Google Scholar 

  85. Feng S, Zhu P, Zheng H, et al. Three-dimensional capillary ratchet-induced liquid directional steering. Science, 2021, 373: 1344–1348

    Article  Google Scholar 

  86. Wang Y, Zhao W, Han M, et al. Sustainable superhydrophobic surface with tunable nanoscale hydrophilicity for water harvesting applications. Angew Chem Int Ed, 2022, 61

  87. Yu Z, Li S, Liu M, et al. A dual-biomimetic knitted fabric with a manipulable structure and wettability for highly efficient fog harvesting. J Mater Chem A, 2021, 10: 304–312

    Article  Google Scholar 

  88. Zhang M, Zheng Z, Zhu Y, et al. Combinational biomimetic microfibers for high-efficiency water collection. Chem Eng J, 2022, 433: 134495

    Article  Google Scholar 

  89. Qi B, Yang X, Wang X. Ultraslippery/hydrophilic patterned surfaces for efficient fog harvest. Colloids Surfs A-Physicochem Eng Aspects, 2022, 640: 128398

    Article  Google Scholar 

  90. Shen Y, Wu X, Tao J, et al. Icephobic materials: Fundamentals, performance evaluation, and applications. Prog Mater Sci, 2019, 103: 509–557

    Article  Google Scholar 

  91. Shi X, Veneziano D, Xie N, et al. Use of chloride-based ice control products for sustainable winter maintenance: A balanced perspective. Cold Regions Sci Tech, 2013, 86: 104–112

    Article  Google Scholar 

  92. Peng C, Yu J, Zhao Z, et al. Synthesis and properties of a clean and sustainable deicing additive for asphalt mixture. PLoS ONE, 2015, 10: e0115721

    Article  Google Scholar 

  93. Zheng W, Teng L, Lai Y, et al. Magnetic responsive and flexible composite superhydrophobic photothermal film for passive antiicing/active deicing. Chem Eng J, 2022, 427: 130922

    Article  Google Scholar 

  94. Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202: 1–8

    Article  Google Scholar 

  95. McCarthy M, Gerasopoulos K, Enright R, et al. Biotemplated hierarchical surfaces and the role of dual length scales on the repellency of impacting droplets. Appl Phys Lett, 2012, 100: 263701

    Article  Google Scholar 

  96. Liu M, Wang S, Jiang L. Bioinspired multiscale surfaces with special wettability. MRS Bull, 2013, 38: 375–382

    Article  Google Scholar 

  97. Yao X, Song Y, Jiang L. Applications of bio-inspired special wettable surfaces. Adv Mater, 2011, 23: 719–734

    Article  Google Scholar 

  98. Nosonovsky M, Hejazi V. Why superhydrophobic surfaces are not always icephobic. ACS Nano, 2012, 6: 8488–8491

    Article  Google Scholar 

  99. Jung Y C, Bhushan B. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. J Microsc, 2008, 229: 127–140

    Article  MathSciNet  Google Scholar 

  100. Gorb E V, Gorb S N. Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomologia Expis Applicata, 2002, 105: 13–28

    Article  Google Scholar 

  101. Bauer U, Grafe T U, Federle W. Evidence for alternative trapping strategies in two forms of the pitcher plant, Nepenthes rafflesiana. J Exp Bot, 2011, 62: 3683–3692

    Article  Google Scholar 

  102. Bonhomme V, Pelloux-Prayer H, Jousselin E, et al. Slippery or sticky? Functional diversity in the trapping strategy of Nepenthes carnivorous plants. New Phytol, 2011, 191: 545–554

    Article  Google Scholar 

  103. Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011, 477: 443–447

    Article  Google Scholar 

  104. Sett S, Yan X, Barac G, et al. Lubricant-infused surfaces for low-surface-tension fluids: Promise versus reality. ACS Appl Mater Interfaces, 2017, 9: 36400–36408

    Article  Google Scholar 

  105. Anand S, Paxson A T, Dhiman R, et al. Enhanced condensation on lubricant-impregnated nanotextured surfaces. ACS Nano, 2012, 6: 10122–10129

    Article  Google Scholar 

  106. Miljkovic N, Enright R, Wang E N. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano, 2012, 6: 1776–1785

    Article  Google Scholar 

  107. Gorb E V, Gorb S N. The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment. Beilstein J Nanotechnol, 2011, 2: 302–310

    Article  Google Scholar 

  108. Cao M, Ju J, Li K, et al. Facile and large-scale fabrication of a cactus-inspired continuous fog collector. Adv Funct Mater, 2014, 24: 3235–3240

    Article  Google Scholar 

  109. Peng Y, He Y, Yang S, et al. Magnetically induced fog harvesting via flexible conical arrays. Adv Funct Mater, 2015, 25: 5967–5971

    Article  Google Scholar 

  110. Ju J, Xiao K, Yao X, et al. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection. Adv Mater, 2013, 25: 5937–5942

    Article  Google Scholar 

  111. Ju J, Yao X, Yang S, et al. Cactus stem inspired cone-arrayed surfaces for efficient fog collection. Adv Funct Mater, 2014, 24: 6933–6938

    Article  Google Scholar 

  112. Tan X, Zhu Y, Shi T, et al. Patterned gradient surface for spontaneous droplet transportation and water collection: Simulation and experiment. J Micromech Microeng, 2016, 26: 115009

    Article  Google Scholar 

  113. Bai H, Zhao T, Wang X, et al. Cactus kirigami for efficient fog harvesting: Simplifying a 3D cactus into 2D paper art. J Mater Chem A, 2020, 8: 13452–13458

    Article  Google Scholar 

  114. Lin J, Tan X, Shi T, et al. Leaf vein-inspired hierarchical wedge-shaped tracks on flexible substrate for enhanced directional water collection. ACS Appl Mater Interfaces, 2018, 10: 44815–44824

    Article  Google Scholar 

  115. Wang M, Liu Q, Zhang H, et al. Laser direct writing of tree-shaped hierarchical cones on a superhydrophobic film for high-efficiency water collection. ACS Appl Mater Interfaces, 2017, 9: 29248–29254

    Article  Google Scholar 

  116. Liu W, Fan P, Cai M, et al. An integrative bioinspired venation network with ultra-contrasting wettability for large-scale strongly self-driven and efficient water collection. Nanoscale, 2019, 11: 8940–8949

    Article  Google Scholar 

  117. Sun J, Zhu P, Yan X, et al. Robust liquid repellency by stepwise wetting resistance. Appl Phys Rev, 2021, 8: 031403

    Article  Google Scholar 

  118. Tuteja A, Choi W, Ma M, et al. Designing superoleophobic surfaces. Science, 2007, 318: 1618–1622

    Article  Google Scholar 

  119. Liu T L, Kim C J C J. Turning a surface superrepellent even to completely wetting liquids. Science, 2014, 346: 1096–1100

    Article  Google Scholar 

  120. Peng L, Chen K, Chen D, et al. Study on the enhancing water collection efficiency of cactus- and beetle-like biomimetic structure using UV-induced controllable diffusion method and 3D printing technology. RSC Adv, 2021, 11: 14769–14776

    Article  Google Scholar 

  121. Tian X, Chen Y, Zheng Y, et al. Controlling water capture of bioinspired fibers with hump structures. Adv Mater, 2011, 23: 5486–5491

    Article  Google Scholar 

  122. Hou Y, Chen Y, Xue Y, et al. Stronger water hanging ability and higher water collection efficiency of bioinspired fiber with multigradient and multi-scale spindle knots. Soft Matter, 2012, 8: 11236

    Article  Google Scholar 

  123. Chen Y, Wang L, Xue Y, et al. Bioinspired tilt-angle fabricated structure gradient fibers: Micro-drops fast transport in a long-distance. Sci Rep, 2013, 3: 2927

    Article  Google Scholar 

  124. Venkatesan H, Chen J, Liu H, et al. A spider-capture-silk-like fiber with extremely high-volume directional water collection. Adv Funct Mater, 2020, 30: 2002437

    Article  Google Scholar 

  125. Bai H, Sun R, Ju J, et al. Large-scale fabrication of bioinspired fibers for directional water collection. Small, 2011, 7: 3429–3433

    Article  Google Scholar 

  126. Li D, Xia Y. Electrospinning of nanofibers: Reinventing the wheel? Adv Mater, 2004, 16: 1151–1170

    Article  Google Scholar 

  127. Jin Y, Yang D, Kang D, et al. Fabrication of necklace-like structures via electrospinning. Langmuir, 2010, 26: 1186–1190

    Article  Google Scholar 

  128. Dong H, Wang N, Wang L, et al. Bioinspired electrospun knotted microfibers for fog harvesting. ChemPhysChem, 2012, 13: 1153–1156

    Article  Google Scholar 

  129. He X H, Wang W, Liu Y M, et al. Microfluidic fabrication of bioinspired microfibers with controllable magnetic spindle-knots for 3D assembly and water collection. ACS Appl Mater Interfaces, 2015, 7: 17471–17481

    Article  Google Scholar 

  130. Shang L, Fu F, Cheng Y, et al. Bioinspired multifunctional spindle-knotted microfibers from microfluidics. Small, 2017, 13: 1600286

    Article  Google Scholar 

  131. Liu Y, Yang N, Li X, et al. Water harvesting of bioinspired microfibers with rough spindle-knots from microfluidics. Small, 2020, 16: 1901819

    Article  Google Scholar 

  132. Tian Y, Zhu P, Tang X, et al. Large-scale water collection of bioinspired cavity-microfibers. Nat Commun, 2017, 8: 1080

    Article  Google Scholar 

  133. Ji X, Guo S, Zeng C, et al. Continuous generation of alginate microfibers with spindle-knots by using a simple microfluidic device. RSC Adv, 2015, 5: 2517–2522

    Article  Google Scholar 

  134. Kang E, Jeong G S, Choi Y Y, et al. Digitally tunable physico-chemical coding of material composition and topography in continuous microfibres. Nat Mater, 2011, 10: 877–883

    Article  Google Scholar 

  135. Wang Y, Zhang L, Wu J, et al. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting. J Mater Chem A, 2015, 3: 18963–18969

    Article  Google Scholar 

  136. Yu Z, Zhang H, Huang J, et al. Namib desert beetle inspired special patterned fabric with programmable and gradient wettability for efficient fog harvesting. J Mater Sci Tech, 2021, 61: 85–92

    Article  Google Scholar 

  137. Zeng X, Qian L, Yuan X, et al. Inspired by Stenocara beetles: From water collection to high-efficiency water-in-oil emulsion separation. ACS Nano, 2017, 11: 760–769

    Article  Google Scholar 

  138. Lee J W, Kim K, Ryoo G, et al. Super-hydrophobic/hydrophilic patterning on three-dimensional objects. Appl Surf Sci, 2022, 576: 151849

    Article  Google Scholar 

  139. Yin K, Du H, Dong X, et al. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection. Nanoscale, 2017, 9: 14620–14626

    Article  Google Scholar 

  140. Zhang L, Wu J, Hedhili M N, et al. Inkjet printing for direct micropatterning of a superhydrophobic surface: Toward biomimetic fog harvesting surfaces. J Mater Chem A, 2015, 3: 2844–2852

    Article  Google Scholar 

  141. Bai H, Wang L, Ju J, et al. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Adv Mater, 2014, 26: 5025–5030

    Article  Google Scholar 

  142. Her E K, Ko T J, Lee K R, et al. Bioinspired steel surfaces with extreme wettability contrast. Nanoscale, 2012, 4: 2900–2905

    Article  Google Scholar 

  143. Park J K, Kim S. Three-dimensionally structured flexible fog harvesting surfaces inspired by Namib desert beetles. Micromachines, 2019, 10: 201

    Article  Google Scholar 

  144. Zhu H, Cai S, Zhou J, et al. Integration of water collection and purification on cactus- and beetle-inspired eco-friendly superwettable materials. Water Res, 2021, 206: 117759

    Article  Google Scholar 

  145. Fürstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir, 2005, 21: 956–961

    Article  Google Scholar 

  146. Tan X, Shi T, Lin J, et al. One-step mask-based diffraction lithography for the fabrication of 3D suspended structures. Nanoscale Res Lett, 2018, 13: 394

    Article  Google Scholar 

  147. Lee S M, Song J H, Jung P G, et al. Nanotextured superhydrophobic micromesh. Sens Actuat A-Phys, 2011, 171: 233–240

    Article  Google Scholar 

  148. Checco A, Rahman A, Black C T. Robust superhydrophobicity in large-area nanostructured surfaces defined by block-copolymer self assembly. Adv Mater, 2014, 26: 886–891

    Article  Google Scholar 

  149. Tan X, Shi T, Gao Y, et al. Fabrication of micro/nanotubes by mask-based diffraction lithography. J Micromech Microeng, 2014, 24: 055006

    Article  Google Scholar 

  150. Gao Y, Shi T, Tan X, et al. A novel method to fabricate silicon tubular gratings with broadband antireflection and super-hydrophobicity. J Nanosci Nanotech, 2014, 14: 4469–4474

    Article  Google Scholar 

  151. Mammen L, Bley K, Papadopoulos P, et al. Functional superhydrophobic surfaces made of Janus micropillars. Soft Matter, 2015, 11: 506–515

    Article  Google Scholar 

  152. Liu X, Gu H, Wang M, et al. 3D printing of bioinspired liquid superrepellent structures. Adv Mater, 2018, 30: 1800103

    Article  Google Scholar 

  153. Jiang M, Wang Y, Liu F, et al. Inhibiting the Leidenfrost effect above 1000°C for sustained thermal cooling. Nature, 2022, 601: 568–572

    Article  Google Scholar 

  154. Kato S, Sato A. Micro/nanotextured polymer coatings fabricated by UV curing-induced phase separation: Creation of superhydrophobic surfaces. J Mater Chem, 2012, 22: 8613

    Article  Google Scholar 

  155. Meng J, Lin S, Xiong X. Preparation of breathable and superhydrophobic coating film via spray coating in combination with vapor-induced phase separation. Prog Org Coatings, 2017, 107: 29–36

    Article  Google Scholar 

  156. Cortese B, D’Amone S, Manca M, et al. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir, 2008, 24: 2712–2718

    Article  Google Scholar 

  157. Zhao Y, Li M, Lu Q, et al. Superhydrophobic polyimide films with a hierarchical topography: Combined replica molding and layer-by-layer assembly. Langmuir, 2008, 24: 12651–12657

    Article  Google Scholar 

  158. Utech S, Bley K, Aizenberg J, et al. Tailoring re-entrant geometry in inverse colloidal monolayers to control surface wettability. J Mater Chem A, 2016, 4: 6853–6859

    Article  Google Scholar 

  159. Villegas M, Cetinic Z, Shakeri A, et al. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating. Anal Chim Acta, 2018, 1000: 248–255

    Article  Google Scholar 

  160. Yong J, Huo J, Yang Q, et al. Femtosecond laser direct writing of porous network microstructures for fabricating super-slippery surfaces with excellent liquid repellence and anti-cell proliferation. Adv Mater Interfaces, 2018, 5: 1701479

    Article  Google Scholar 

  161. Juuti P, Haapanen J, Stenroos C, et al. Achieving a slippery, liquid-infused porous surface with anti-icing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate. Appl Phys Lett, 2017, 110: 161603

    Article  Google Scholar 

  162. Wang N, Xiong D, Lu Y, et al. Design and fabrication of the lyophobic slippery surface and its application in anti-icing. J Phys Chem C, 2016, 120: 11054–11059

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to GuangLan Liao or TieLin Shi.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51222508 and 51175210).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gan, L., Sun, B. et al. Bio-inspired manufacturing of superwetting surfaces for fog collection and anti-icing applications. Sci. China Technol. Sci. 65, 1975–1994 (2022). https://doi.org/10.1007/s11431-022-2101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2101-9

Navigation