Skip to main content
Log in

Effects of ZnO nanoparticles addition to plasma electrolytic oxidation coatings on magnesium alloy: Microstructure, in vitro corrosion and antibacterial properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present research, zinc oxide (ZnO) nanoparticles were added into the alkaline phosphate electrolyte as an additive for grafting the bacteria resistance upon the oxide coatings prepared by plasma electrolytic oxidation (PEO) on WE43 magnesium (Mg) alloy. The duration of PEO treatment was determined as one processing parameter for regulating the microstructure, composition, corrosion, and antibacterial properties of PEO coatings. The results showed that ZnO nanoparticles can be incorporated into and relatively uniformly distributed within the PEO coatings. Increasing the duration of PEO treatment not only increases the Zn content in PEO coatings but strengthens their in vitro degradation performance in the SBF solution. Zn ions can be released from ZnO-doped oxide coatings, which caused a negligible impact on the human umbilical vein endothelial cells, but significant antibacterial effects against Escherichia coli. This present work elucidated that incorporating ZnO nanoparticles is a feasible and regulable strategy for fabricating antibacterial PEO coatings for biomedical Mg alloys.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings and conclusions of this study are available within the article. Extra data are available from the corresponding authors upon reasonable request.

References

  1. L. Chen, C.-M. Tseng, Y. Qiu, J. Yang, C.-L. Chang, X. Wang, W. Li, A layer-by-layer assembled coating for improved stress corrosion cracking on biomedical magnesium alloy in cell culture medium. Surf. Coat. Technol. 403, 126427 (2020)

    Article  CAS  Google Scholar 

  2. J.J. Yang, X.P. Lu, C. Blawert, S.C. Di, M.L. Zheludkevich, Microstructure and corrosion behavior of Ca/P coatings prepared on magnesium by plasma electrolytic oxidation. Surf. Coat. Technol. 319, 359 (2017)

    Article  CAS  Google Scholar 

  3. Y. Xin, T. Hu, P.K. Chu, In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater. 7(4), 1452 (2011)

    Article  CAS  Google Scholar 

  4. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9), 1728 (2006)

    Article  CAS  Google Scholar 

  5. E. Zhang, X. Zhao, J. Hu, R. Wang, S. Fu, G. Qin, Antibacterial metals and alloys for potential biomedical implants. Bioactive Mater. 6(8), 2569 (2021)

    Article  CAS  Google Scholar 

  6. L. Ling, S. Cai, Q. Li, J. Sun, X. Bao, G. Xu, Recent advances in hydrothermal modification of calcium phosphorus coating on magnesium alloy. J. Magnes. Alloys 10(1), 62 (2022)

    Article  CAS  Google Scholar 

  7. N.J. Ostrowski, B. Lee, A. Roy, M. Ramanathan, P.N. Kumta, Biodegradable poly(lactide-co-glycolide) coatings on magnesium alloys for orthopedic applications. J. Mater. Sci. Mater. Med. 24(1), 85 (2013)

    Article  CAS  Google Scholar 

  8. M. Roknian, A. Fattah-alhosseini, S.O. Gashti, M.K. Keshavarz, Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: microstructural analysis, antibacterial effect and corrosion behavior of coatings in Ringer’s physiological solution. J. Alloys Compd. 740, 330 (2018)

    Article  CAS  Google Scholar 

  9. H.J. Robinson, A.E. Markaki, C.A. Collier, T.W. Clyne, Cell adhesion to plasma electrolytic oxidation (PEO) titania coatings, assessed using a centrifuging technique. J. Mech. Behav. Biomed. Mater. 4(8), 2103 (2011)

    Article  CAS  Google Scholar 

  10. L.-Y. Cui, H.-P. Liu, K. Xue, W.-L. Zhang, R.-C. Zeng, S.-Q. Li, D.-K. Xu, E.-H. Han, S.-K. Guan, In vitro corrosion and antibacterial performance of micro-arc oxidation coating on AZ31 magnesium alloy: effects of tannic acid. J. Electrochem. Soc. 165(11), C821 (2018)

    Article  CAS  Google Scholar 

  11. W.H. Chang, B. Qu, A.D. Liao, S.F. Zhang, R.F. Zhang, J.H. Xiang, In vitro biocompatibility and antibacterial behavior of anodic coatings fabricated in an organic phosphate containing solution on Mg–1.0Ca alloys. Surf. Coat. Technol. 289, 75 (2016)

    Article  CAS  Google Scholar 

  12. M. Du, L. Huang, M. Peng, F. Hu, Q. Gao, Y. Chen, P. Liu, Preparation of vancomycin-loaded alginate hydrogel coating on magnesium alloy with enhanced anticorrosion and antibacterial properties. Thin Solid Films 693, 137679 (2020)

    Article  CAS  Google Scholar 

  13. S.L. Aktug, S. Durdu, S. Aktas, E. Yalcin, M. Usta, Surface and in vitro properties of Ag-deposited antibacterial and bioactive coatings on AZ31 Mg alloy. Surf. Coat. Technol. 375, 46 (2019)

    Article  CAS  Google Scholar 

  14. X. Yan, M.-C. Zhao, Y. Yang, L. Tan, Y.-C. Zhao, D.-F. Yin, K. Yang, A. Atrens, Improvement of biodegradable and antibacterial properties by solution treatment and micro-arc oxidation (MAO) of a magnesium alloy with a trace of copper. Corros. Sci. 156, 125 (2019)

    Article  CAS  Google Scholar 

  15. L.-Y. Cui, G.-B. Wei, Z.-Z. Han, R.-C. Zeng, L. Wang, Y.-H. Zou, S.-Q. Li, D.-K. Xu, S.-K. Guan, In vitro corrosion resistance and antibacterial performance of novel tin dioxide-doped calcium phosphate coating on degradable Mg-1Li-1Ca alloy. J. Mater. Sci. Technol. 35(3), 254 (2019)

    Article  CAS  Google Scholar 

  16. I.X. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li, C.H. Chu, The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 15, 2555 (2020)

    Article  CAS  Google Scholar 

  17. W.K. Jung, H.C. Koo, K.W. Kim, S. Shin, S.H. Kim, Y.H. Park, antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 74(7), 2171 (2008)

    Article  CAS  Google Scholar 

  18. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett. 7(3), 219 (2015)

    CAS  Google Scholar 

  19. T. Kambe, T. Tsuji, A. Hashimoto, N. Itsumura, The physiological biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol. Rev. 95(3), 749 (2015)

    Article  CAS  Google Scholar 

  20. J.F. Collins, Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals (Academic Press, Cambridge, 2016)

    Google Scholar 

  21. V. Puspasari, A. Ridhova, A. Hermawan, M.I. Amal, M.M. Khan, ZnO-based antimicrobial coatings for biomedical applications. Bioprocess Biosyst. Eng. (2022). https://doi.org/10.1007/s00449-022-02733-9

    Article  Google Scholar 

  22. M.-H. Lin, Y.-H. Wang, C.-H. Kuo, S.-F. Ou, P.-Z. Huang, T.-Y. Song, Y.-C. Chen, S.-T. Chen, C.-H. Wu, Y.-H. Hsueh, F.-Y. Fan, Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants. Carbohydr. Polym. 257, 117639 (2021)

    Article  CAS  Google Scholar 

  23. S. Xu, T. Sun, Q. Xu, Q. Song, Extremely hydrophobic zinc oxide micro/nanostructures on stainless steel surfaces with anti-biofilm property. Chem. Lett. 48(1), 36 (2019)

    Article  CAS  Google Scholar 

  24. X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K.U. Kainer, M.L. Zheludkevich, Plasma electrolytic oxidation coatings with particle additions—a review. Surf. Coat. Technol. 307, 1165 (2016)

    Article  CAS  Google Scholar 

  25. X. Lu, C. Blawert, Y. Huang, H. Ovri, M.L. Zheludkevich, K.U. Kainer, Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochim. Acta 187, 20 (2016)

    Article  CAS  Google Scholar 

  26. Q. Han, Y. Li, X. Lu, D. Mei, Q. Chen, T. Zhang, F. Wang, Fabrication of Ag containing antibacterial PEO coatings on pure Mg. Mater. Lett. 293, 129731 (2021)

    Article  CAS  Google Scholar 

  27. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering. Surf. Coat. Technol. 122(2–3), 73 (1999)

    Article  CAS  Google Scholar 

  28. C. Blawert, W. Dietzel, E. Ghali, G.L. Song, Anodizing treatments for magnesium alloys and their effecton corrosion resistance in various environments. Adv. Eng. Mater. 8(6), 511 (2006)

    Article  CAS  Google Scholar 

  29. D. Mei, S.V. Lamaka, J. Gonzalez, F. Feyerabend, R. Willumeit-Römer, M.L. Zheludkevich, The role of individual components of simulated body fluid on the corrosion behavior of commercially pure Mg. Corros. Sci. 147, 81 (2019)

    Article  CAS  Google Scholar 

  30. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution (NACE, Houston, 1974)

    Google Scholar 

  31. K.M. Lee, K.R. Shin, S. Namgung, B. Yoo, D.H. Shin, Electrochemical response of ZrO2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation. Surf. Coat. Technol. 205(13), 3779 (2011)

    Article  CAS  Google Scholar 

  32. B.S. Necula, I. Apachitei, F.D. Tichelaar, L.E. Fratila-Apachitei, J. Duszczyk, An electron microscopical study on the growth of TiO2–Ag antibacterial coatings on Ti6Al7Nb biomedical alloy. Acta Biomater. 7(6), 2751 (2011)

    Article  CAS  Google Scholar 

  33. X. Lu, C. Blawert, M.L. Zheludkevich, K.U. Kainer, Insights into plasma electrolytic oxidation treatment with particle addition. Corros. Sci. 101, 201 (2015)

    Article  CAS  Google Scholar 

  34. X. Qu, H. Yang, B. Jia, Z. Yu, Y. Zheng, K. Dai, Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation. Acta Biomater. 117, 400 (2020)

    Article  CAS  Google Scholar 

  35. J. Jiao, S. Zhang, X. Qu, B. Yue, Recent advances in research on antibacterial metals and alloys as implant materials. Front. Cell Infect. Microbiol. 11, 693939 (2021)

    Article  CAS  Google Scholar 

  36. C. Zhang, J. Lin, N.T. Nguyen, Y. Guo, C. Xu, C. Seo, E. Villafana, H. Jimenez, Y. Chai, R. Guan, H. Liu, Antimicrobial bioresorbable Mg-Zn-Ca alloy for bone repair in a comparison study with Mg-Zn-Sr alloy and pure Mg. ACS Biomater. Sci. Eng. 6(1), 517 (2020)

    Article  CAS  Google Scholar 

  37. L. Chen, Y. Yang, G. Wang, Y. Wang, S.O. Adede, M. Zhang, C. Jiao, D. Wang, D. Yan, Y. Liu, D. Chen, W. Wang, Design and fabrication of a Sandwichlike Zn/Cu/Al-Zr coating for superior anticorrosive protection performance of ZM5 Mg alloy. ACS Appl. Mater. Interfaces 13(34), 41120 (2021)

    Article  Google Scholar 

  38. F. Peng, S. Cheng, R. Zhang, M. Li, J. Zhou, D. Wang, Y. Zhang, Zn-contained mussel-inspired film on Mg alloy for inhibiting bacterial infection and promoting bone regeneration. Regener. Biomater. 8(1), rbaa044 (2021)

    Article  Google Scholar 

  39. T.K. Jana, S.K. Maji, A. Pal, R.P. Maiti, T.K. Dolai, K. Chatterjee, Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology. J. Colloid Interface Sci. 480, 9 (2016)

    Article  CAS  Google Scholar 

  40. H. Chen, R. Wang, J. Zhang, H. Hua, M. Zhu, Synthesis of core-shell structured ZnO@m-SiO(2) with excellent reinforcing effect and antimicrobial activity for dental resin composites. Dent Mater. 34(12), 1846 (2018)

    Article  CAS  Google Scholar 

  41. D. Arun, D. Adikari Mudiyanselage, R. Gulam Mohamed, M. Liddell, N.M. Monsur Hassan, D. Sharma, Does the addition of zinc oxide nanoparticles improve the antibacterial properties of direct dental composite resins? A systematic review. Materials (Basel, Switzerland) 14(1), 40 (2020)

    Article  Google Scholar 

  42. F. Peng, D. Wang, D. Zhang, B. Yan, H. Cao, Y. Qiao, X. Liu, PEO/Mg-Zn-Al LDH composite coating on Mg alloy as a Zn/Mg ion-release platform with multifunctions: enhanced corrosion resistance, osteogenic, and antibacterial activities. ACS Biomater. Sci. Eng. 4(12), 4112 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 92166112), the Project of MOE Key Lab of Disaster Forecast and Control in Engineering in Jinan University (Grant No. 20200904006), the Guangdong Province Basic and Applied Basic Research Foundation (Grant No. 2020B1515420004), the Guanxi Key Laboratory of Information Materials (Grant No. 211003-K), the Fundamental Research Funds for the Central Universities (Grant No. 21622110) and Project of Educational Commission of Guangdong Province of China (2019GKQNCX026).

Author information

Authors and Affiliations

Authors

Contributions

DL: Investigation, Visualization, Formal analysis, Writing—original draft. JD: Investigation, Visualization, Formal analysis. ZL: Investigation, Formal analysis, Writing—original draft. JJ: Investigation, Visualization, Formal analysis. YB: Investigation, Visualization. JY: Conceptualization, Formal analysis, Writing—original draft. SZ: Conceptualization, Supervision, Formal analysis, Writing—review & editing.

Corresponding author

Correspondence to Shengfeng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Deng, J., Liu, Z. et al. Effects of ZnO nanoparticles addition to plasma electrolytic oxidation coatings on magnesium alloy: Microstructure, in vitro corrosion and antibacterial properties. Journal of Materials Research 37, 2897–2909 (2022). https://doi.org/10.1557/s43578-022-00684-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00684-1

Keywords

Navigation