Skip to main content
Log in

Preparation and property of self-sealed plasma electrolytic oxide coating on magnesium alloy

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Plasma electrochemical oxidation (PEO) is a surface modification technology to form ceramic coatings on magnesium alloys. However, its application is limited due to its defects. This work reports a novel preparation of in-situ sealing of PEO coatings by four-layer voltage and sol addition. The morphology and structure were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffractometer (XRD). Image-Pro Plus 6.0 was used to determine the porosity of the coating, which was decreased from 8.53% to 0.51%. Simultaneously, the coating thickness was increased by a factor of four. The anti-corrosion performance of each sample was evaluated using electrochemical tests, and the findings revealed that the corrosion current density of coatings (icorr) of the samples were lowered from 9.152 × 10−2 to 6.152 × 10−4 mA·cm−2, and the total resistance (RT) of the samples were enhanced from 2.19 × 104 to 2.33 × 105 Ω·cm2. The salt spray test used to simulate the actual environment showed that corrosion points appeared on the surface of the coating only at the 336 h. In addition, the mechanism of PEO self-sealing behavior was described in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloys, 9(2021), No. 3, p. 705.

    Article  CAS  Google Scholar 

  2. K. Luo, L. Zhang, G.H. Wu, W.C. Liu, and W.J. Ding, Effect of Y and Gd content on the microstructure and mechanical properties of Mg—Y—RE alloys, J. Magnes. Alloys, 7(2019), No. 2, p. 345.

    Article  CAS  Google Scholar 

  3. H.L. Huang and W.L. Yang, Corrosion behavior of AZ91D magnesium alloy in distilled water, Arab. J. Chem., 13(2020), No. 7, p. 6044.

    Article  CAS  Google Scholar 

  4. G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567.

    Article  Google Scholar 

  5. F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 669.

    Article  CAS  Google Scholar 

  6. J.H. Chu, L.B. Tong, M. Wen, et al., Inhibited corrosion activity of biomimetic graphene-based coating on Mg alloy through a cerium intermediate layer, Carbon, 161(2020), p. 577.

    Article  CAS  Google Scholar 

  7. L.X. Li, Z.H. Xie, C. Fernandez, et al., Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection, Electrochim. Acta, 330(2020), art. No. 135186.

  8. G.Q. Duan, L.X. Yang, S.J. Liao, et al., Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy, Corros. Sci., 135(2018), p. 197.

    Article  CAS  Google Scholar 

  9. Ö. Bayrak, H. Ghahramanzadeh Asl, and A. Ak, Protein adsorption, cell viability and corrosion properties of Ti6Al4V alloy treated by plasma oxidation and anodic oxidation, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1269.

    Article  Google Scholar 

  10. Z.Q. Zhang, L. Wang, M.Q. Zeng, et al., Corrosion resistance and superhydrophobicity of one-step polypropylene coating on anodized AZ31 Mg alloy, J. Magnes. Alloys, 9(2021), No. 4, p. 1443.

    Article  Google Scholar 

  11. D. Jiang, H. Zhou, S. Wan, G.Y. Cai, and Z.H. Dong, Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly, Surf. Coat. Technol., 339(2018), p. 155.

    Article  CAS  Google Scholar 

  12. Y.B. Zhao, L.Q. Shi, X.J. Ji, et al., Corrosion resistance and antibacterial properties of polysiloxane modified layer-by-layer assembled self-healing coating on magnesium alloy, J. Colloid Interface Sci., 526(2018), p. 43.

    Article  CAS  Google Scholar 

  13. H. Ashassi-Sorkhabi, S. Moradi-Alavian, R. Jafari, A. Kazempour, and E. Asghari, Effect of amino acids and montmorillonite nanoparticles on improving the corrosion protection characteristics of hybrid sol—gel coating applied on AZ91 Mg alloy, Mater. Chem. Phys., 225(2019), p. 298.

    Article  CAS  Google Scholar 

  14. T.X. Lu, C.G. Chen, Z.M. Guo, P. Li, and M.X. Guo, Tungsten nanoparticle-strengthened copper composite prepared by a solgel method and in situ reaction, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1477.

    Article  CAS  Google Scholar 

  15. V. Dehnavi, W.J. Binns, J.J. Noël, D.W. Shoesmith, and B.L. Luan, Growth behaviour of low-energy plasma electrolytic oxidation coatings on a magnesium alloy, J. Magnes. Alloys, 6(2018), No. 3, p. 229.

    Article  CAS  Google Scholar 

  16. M. Roknian, A. Fattah-Alhosseini, S.O. Gashti, and M.K. Keshavarz, Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: Microstructural analysis, antibacterial effect and corrosion behavior of coatings in Ringer’s physiological solution, J. Alloys Compd., 740(2018), p. 330.

    Article  CAS  Google Scholar 

  17. X.P. Lu, C. Blawert, K.U. Kainer, and M.L. Zheludkevich, Investigation of the formation mechanisms of plasma electrolytic oxidation coatings on Mg alloy AM50 using particles, Electrochim. Acta, 196(2016), p. 680.

    Article  CAS  Google Scholar 

  18. H. Tang and Y. Gao, Preparation and characterization of hydroxyapatite containing coating on AZ31 magnesium alloy by micro-arc oxidation, J. Alloys Compd., 688(2016), p. 699.

    Article  CAS  Google Scholar 

  19. D.V. Mashtalyar, S.V. Gnedenkov, S.L. Sinebryukhov, I.M. Imshinetskiy, and A.V. Puz’, Plasma electrolytic oxidation of the magnesium alloy MA8 in electrolytes containing TiN nanoparticles, J. Mater. Sci. Technol., 33(2017), No. 5, p. 461.

    Article  CAS  Google Scholar 

  20. K.R. Wu, C.H. Hung, C.W. Yeh, and J.K. Wu, Microporous TiO2—WO3/TiO2 films with visible-light photocatalytic activity synthesized by micro arc oxidation and DC magnetron sputtering, Appl. Surf. Sci., 263(2012), p. 688.

    Article  CAS  Google Scholar 

  21. F. Muhaffel and H. Cimenoglu, Development of corrosion and wear resistant micro-arc oxidation coating on a magnesium alloy, Surf. Coat. Technol., 357(2019), p. 822.

    Article  CAS  Google Scholar 

  22. A. Fattah-Alhosseini, K. Babaei, and M. Molaei, Plasma electrolytic oxidation (PEO) treatment of zinc and its alloys: A review, Surf. Interfaces, 18(2020), art. No. 100441.

  23. B.W. Zhu, L. Wang, Y.Z. Wu, W. Yue, J. Liang, and B.C. Cao, Improving corrosion resistance and biocompatibility of AZ31 magnesium alloy by ultrasonic cold forging and micro-arc oxidation, J. Biomater. Appl., 36(2022), No. 9, p. 1664.

    Article  CAS  Google Scholar 

  24. M. Babaei, C. Dehghanian, P. Taheri, and M. Babaei, Effect of duty cycle and electrolyte additive on photocatalytic performance of TiO2—ZrO2 composite layers prepared on CP Ti by micro arc oxidation method, Surf. Coat. Technol., 307(2016), p. 554.

    Article  CAS  Google Scholar 

  25. M. S. Joni and A. Fattah-Alhosseini, Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy, J. Alloys Compd., 661(2016), p. 237.

    Article  Google Scholar 

  26. M. Vakili-Azghandi and A. Fattah-Alhosseini, Effects of duty cycle, current frequency, and current density on corrosion behavior of the plasma electrolytic oxidation coatings on 6061Al alloy in artificial seawater, Metall. Mater. Trans. A, 48(2017), No. 10, p. 4681.

    Article  CAS  Google Scholar 

  27. L.J. Bai, B.X. Dong, G.T. Chen, T. Xin, J.N. Wu, and X.D. Sun, Effect of positive pulse voltage on color value and corrosion property of magnesium alloy black micro-arc oxidation ceramic coating, Surf. Coat. Technol., 374(2019), p. 402.

    Article  CAS  Google Scholar 

  28. Y.W. Song, K.H. Dong, D.Y. Shan, and E.H. Han, Investigation of a novel self-sealing pore micro-arc oxidation film on AM60 magnesium alloy, J. Magnes. Alloys, 1(2013), No. 1, p. 82.

    Article  CAS  Google Scholar 

  29. Z. Li, Z. Chen, S. Feng, T. Zhao, and W.Z. Wang, Effects of Na2WO4 on the MAO coatings on AZ80, Surf. Eng., 36(2020), p. 817.

    Article  CAS  Google Scholar 

  30. B. Zou, G.H. Lü, G.L. Zhang, and Y.Y. Tian, Effect of current frequency on properties of coating formed by microarc oxidation on AZ91D magnesium alloy, Trans. Nonferrous Met. Soc. China, 25(2015), No. 5, p. 1500.

    Article  CAS  Google Scholar 

  31. X.J. Cui, C.H. Liu, R.S. Yang, M.T. Li, and X.Z. Lin, Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism, Surf. Coat. Technol., 269(2015), p. 228.

    Article  CAS  Google Scholar 

  32. S.N. Pak, Z.P. Yao, K.S. Ju, C.N. Ri, and Q.X. Xia, Effect of organic additives on structure and corrosion resistance of MAO coating, Vacuum, 151(2018), p. 8.

    Article  CAS  Google Scholar 

  33. M. Nadimi and C. Dehghanian, Incorporation of ZnO—ZrO2 nanoparticles into TiO2 coatings obtained by PEO on Ti—6Al—4V substrate and evaluation of its corrosion behavior, microstructural and antibacterial effects exposed to SBF solution, Ceram. Int., 47(2021), No. 23, p. 33413.

    Article  CAS  Google Scholar 

  34. M.M. Krishtal, P.V. Ivashin, I.S. Yasnikov, and A.V. Polunin, Effect of nanosize SiO2 particles added into electrolyte on the composition and morphology of oxide layers formed in alloy AK6M2 under microarc oxidizing, Met. Sci. Heat Treat., 57(2015), No. 7–8, p. 428.

    Article  CAS  Google Scholar 

  35. W.P. Li, M.Q. Tang, L.Q. Zhu, and H.C. Liu, Formation of microarc oxidation coatings on magnesium alloy with photocatalytic performance, Appl. Surf. Sci., 258(2012), No. 24, p. 10017.

    Article  CAS  Google Scholar 

  36. Z.M. Shi, M. Liu, and A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corros. Sci., 52(2010), No. 2, p. 579.

    Article  CAS  Google Scholar 

  37. M.F. He, L. Liu, Y.T. Wu, Z.X. Tang, and W.B. Hu, Corrosion properties of surface-modified AZ91D magnesium alloy, Corros. Sci., 50(2008), No. 12, p. 3267.

    Article  CAS  Google Scholar 

  38. T.F. Xiang, S.L. Zheng, M. Zhang, H.R. Sadig, and C. Li, Bioinspired slippery zinc phosphate coating for sustainable corrosion protection, ACS Sustainable Chem. Eng., 6(2018), No. 8, p. 10960.

    Article  CAS  Google Scholar 

  39. M. Ramezanzadeh, B. Ramezanzadeh, M. Mahdavian, and G. Bahlakeh, Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings, Carbon, 161(2020), p. 231.

    Article  CAS  Google Scholar 

  40. A.K. Behera, A. Das, S. Das, and A. Mallik, Electrochemically functionalized graphene as an anti-corrosion reinforcement in Cu matrix composite thin films, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1525.

    Article  CAS  Google Scholar 

  41. W. Shang, F. Wu, Y.Q. Wen, C.B. He, X.Q. Zhan, and Y.Q. Li, Corrosion resistance and mechanism of graphene oxide composite coatings on magnesium alloy, Ind. Eng. Chem. Res., 58(2019), No. 3, p. 1200.

    Article  CAS  Google Scholar 

  42. C.Q. Wu, Q. Liu, R.R. Chen, et al., Fabrication of ZIF-8@SiO2 micro/nano hierarchical superhydrophobic surface on AZ31 magnesium alloy with impressive corrosion resistance and abrasion resistance, ACS Appl. Mater. Interfaces, 9(2017), No. 12, p. 11106.

    Article  CAS  Google Scholar 

  43. A. Fattah-Alhosseini, R. Chaharmahali, and K. Babaei, Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review, J. Magnes. Alloys, 8(2020), No. 3, p. 799.

    Article  CAS  Google Scholar 

  44. A. Bordbar-Khiabani, B. Yarmand, and M. Mozafari, Enhanced corrosion resistance and in-vitro biodegradation of plasma electrolytic oxidation coatings prepared on AZ91 Mg alloy using ZnO nanoparticles-incorporated electrolyte, Surf. Coat. Technol., 360(2019), p. 153.

    Article  CAS  Google Scholar 

  45. H.P. Duan, C.W. Yan, and F.H. Wang, Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution, Electrochim. Acta, 52(2007), No. 15, p. 5002.

    Article  CAS  Google Scholar 

  46. Z.R. Zheng, M.C. Zhao, L.L. Tan, et al., Corrosion behavior of a self-sealing coating containing CeO2 particles on pure Mg produced by micro-arc oxidation, Surf. Coat. Technol., 386(2020), art. No. 125456.

Download references

Acknowledgements

This work was financially supported by the Guangxi Natural Science Foundation (No. 2020GXNSFAA159011) and the National Natural Science Foundation of China (No. 51664011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Shang or Yuqing Wen.

Additional information

Conflict of Interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Wang, D., Liu, J. et al. Preparation and property of self-sealed plasma electrolytic oxide coating on magnesium alloy. Int J Miner Metall Mater 30, 959–969 (2023). https://doi.org/10.1007/s12613-022-2542-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2542-0

Keywords

Navigation