Skip to main content
Log in

Study of Coating Growth Behavior During the Plasma Electrolytic Oxidation of Magnesium Alloy ZK60

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Plasma electrolytic oxidation technique was used to coat ZK60 magnesium alloy in a silicate-based electrolyte. Effects of oxidation time on the morphology, phase structure, and corrosion resistance of the resulting coatings were systematically investigated by scanning electron microscopy, energy-dispersive spectrometry, x-ray diffraction, x-ray photoelectron spectroscopy, and potentiodynamic polarization. The main components of the inner and the outer coating layers were MgO and Mg2SiO4, respectively. It was also found that the oxidation time has a significant impact on the corrosion resistance properties of the coatings. The coating obtained within the oxidation time of 360 s exhibited a corrosion current of 7.6 × 10−8 A/cm2 in 3.5 wt.% NaCl solution, which decreased significantly when comparing with the pristine magnesium alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10

Similar content being viewed by others

Reference

  1. Z.H. Yu, H.G. Yan, X.Y. Yin, Y. Li, and G.H. Yan, Liquation Cracking in Laser Beam Welded Joint of ZK60 Magnesium Alloy, Trans. Nonferrous Met. Soc. China, 2012, 22, p 2891–2897

    Article  Google Scholar 

  2. X.H. Wu, P.B. Su, Z.H. Jiang, and S. Meng, Influences of Current Density on Tribological Characteristics of Ceramic Coatings on ZK60 Mg Alloy by Plasma Electrolytic Oxidation, ACS Appl. Mater. Inter., 2010, 2, p 808–812

    Article  Google Scholar 

  3. M.I. Jamesh, G. Wu, Y. Zhao, D.R. McKenzie, M.M. Bilek, and P.K. Chu, Effects of Zirconium and Oxygen Plasma Ion Implantation on the Corrosion Behavior of ZK60 Mg Alloy in Simulated Body Fluids, Corros. Sci., 2014, 82, p 7–26

    Article  Google Scholar 

  4. G.L. Makar and J. Kruger, Corrosion of Magnesium, Int. Mater. Rev., 1993, 38, p 138–153

    Article  Google Scholar 

  5. X.B. Chen, N. Birbilis, and T.B. Abbott, Effect of [Ca2+] and [PO4 3−] Levels on the Formation of Calcium Phosphate Conversion Coatings on Die-Cast Magnesium Alloy AZ91D, Corros. Sci., 2012, 55, p 226–232

    Article  Google Scholar 

  6. G. Song and A. Atrens, Recent Insights into the Mechanism of Magnesium Corrosion and Research Suggestions, Adv. Eng. Mater., 2007, 9, p 177–183

    Article  Google Scholar 

  7. H. Huo, Y. Li, and F. Wang, Corrosion of AZ91D Magnesium Alloy with a Chemical Conversion Coating and Electroless Nickel Layer, Corros. Sci., 2004, 46, p 1467–1477

    Article  Google Scholar 

  8. X.B. Chen, N. Birbilis, and T.B. Abbott, A Simple Route Towards a Hydroxyapatite-Mg(Oh)2 Conversion Coating for Magnesium, Corros. Sci., 2011, 53, p 2263–2268

    Article  Google Scholar 

  9. W. Zhou, D. Shan, E.H. Han, and W. Ke, Structure and Formation Mechanism of Phosphate Conversion Coating on Die-Cast AZ91D Magnesium Alloy, Corros. Sci., 2008, 50, p 329–337

    Article  Google Scholar 

  10. Y. Chen, B.L. Luan, G.L. Song, Q. Yang, D.M. Kingston, and F. Bensebaa, An Investigation of New Barium Phosphate Chemical Conversion Coating on AZ31 Magnesium Alloy, Surf. Coat. Technol., 2012, 210, p 156–165

    Article  Google Scholar 

  11. L. Muccioli, G. D’Avino, and C. Zannoni, Simulation of Vapor-Phase Deposition and Growth of a Pentacene Thin Film on C60 (001), Adv. Mater., 2011, 23, p 4532–4536

    Article  Google Scholar 

  12. X. Tong, M. Dai, and Z. Zhang, Thermal Fatigue Resistance of H13 Steel Treated by Selective Laser Surface Melting and CrNi Alloying, Appl. Surf. Sci., 2013, 271, p 373–380

    Article  Google Scholar 

  13. Y. Zhang, W. Cai, F. Si, J. Ge, L. Liang, C.P. Liu, and W. Xing, A Modified Nafion Membrane with Extremely Low Methanol Permeability via Surface Coating of Sulfonated Organic Silica, Chem. Commun., 2012, 48, p 2870–2872

    Article  Google Scholar 

  14. F. Zhang, C. Di, N. Berdunov, Y. Hu, Y.B. Hu, X.K. Gao, Q. Meng, H. Sirringhaus, and D.B. Zhu, Ultrathin Film Organic Transistors: Precise Control of Semiconductor Thickness via Spin-Coating, Adv. Mater., 2013, 25, p 1401–1407

    Article  Google Scholar 

  15. T. Ibe, R.B. Frings, A. Lachowicz, S. Kyo, and H. Nishide, Nitroxide Polymer Networks Formed by Michael Addition: On Site-Cured Electrode-Active Organic Coating, Chem. Commun., 2010, 46, p 3475–3477

    Article  Google Scholar 

  16. R. Arrabal, J.M. Mota, A. Criado, A. Pardo, M. Mohedano, and E. Matykina, Assessment of Duplex Coating Combining Plasma Electrolytic Oxidation and Polymer Layer on AZ31 Magnesium Alloy, Surf. Coat. Technol., 2012, 206, p 4692–4703

    Article  Google Scholar 

  17. P.B. Srinivasan, C. Blawert, and W. Dietzel, Effect of Plasma Electrolytic Oxidation Coating on the Stress Corrosion Cracking Behaviour of Wrought AZ61 Magnesium Alloy, Corros. Sci., 2008, 50, p 2415–2418

    Article  Google Scholar 

  18. J. Liang, P.B. Srinivasan, C. Blawert, M. Stormer, and W. Dietzel, Electrochemical Corrosion Behaviour of Plasma Electrolytic Oxidation Coatings on AM50 Magnesium Alloy Formed in Silicate and Phosphate Based Electrolytes, Electrochim. Acta., 2009, 54, p 3842–3850

    Article  Google Scholar 

  19. Y. Wang, Z. Jiang, Z. Yao, and H. Tang, Microstructure And Corrosion Resistance Of Ceramic Coating on Carbon Steel Prepared by Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2010, 204, p 1685–1688

    Article  Google Scholar 

  20. L. Wang, L. Chen, Z. Yan, H.L. Wang, and J.Z. Peng, Effect of Potassium Fluoride on Structure and Corrosion Resistance of Plasma Electrolytic Oxidation Films Formed on AZ31 Magnesium Alloy, J. Alloys Compd., 2009, 480, p 469–474

    Article  Google Scholar 

  21. H. Luo, Q. Cai, B. Wei, B. Yu, D. Li, J. He, and Z. Liu, Effect of (NaPO3)6 Concentrations on Corrosion Resistance of Plasma Electrolytic Oxidation Coatings Formed on AZ91D Magnesium Alloy, J. Alloys Compd., 2008, 464, p 537–543

    Article  Google Scholar 

  22. M.C. Zhao, M. Liu, G.L. Song, and A. Atrens, Influence of pH and Chloride Ion Concentration on the Corrosion of Mg Alloy ZE41, Corros. Sci., 2008, 50, p 3168–3178

    Article  Google Scholar 

  23. J. Liang, P.B. Srinivasan, C. Blawert, and W. Dietzel, Influence of pH on the Deterioration of Plasma Electrolytic Oxidation Coated AM50 Magnesium Alloy in NaCl Solutions, Corros. Sci., 2010, 52, p 540–547

    Article  Google Scholar 

  24. L.O. Snizhko, A.L. Yerokhin, A. Pilkington, N.L. Gurevina, D.O. Misnyankin, A. Leyland, and A. Matthews, Anodic Processes in Plasma Electrolytic Oxidation of Aluminium in Alkaline Solutions, Electrochim. Acta, 2004, 49, p 2085–2095

    Article  Google Scholar 

  25. H.M. Wang, Z.H. Chen, and L.L. Li, Corrosion Resistance and Microstructure Characteristics of Plasma Electrolytic Oxidation Coatings Formed on AZ31 Magnesium Alloy, Surf. Eng., 2010, 26, p 385–391

    Article  Google Scholar 

  26. C. Blawert, V. Heitmann, W. Dietzel, H.M. Nykyforchyn, and M.D. Klapkiv, Influence of Process Parameters on the Corrosion Properties of Electrolytic Conversion Plasma Coated Magnesium Alloys, Surf. Coat. Technol., 2005, 200, p 68–72

    Article  Google Scholar 

  27. Y. Gu, S. Bandopadhyay, C. Chen, Y. Guo, and C. Ning, Effect of Oxidation Time on the Corrosion Behavior of Micro-Arc Oxidation Produced AZ31 Magnesium Alloys in Simulated Body Fluid, J. Alloys Compd., 2012, 543, p 109–117

    Article  Google Scholar 

  28. R.O. Hussein, D.O. Northwood, and X. Nie, The Effect of Processing Parameters and Substrate Composition on the Corrosion Resistance of Plasma Electrolytic Oxidation (PEO) Coated Magnesium Alloys, Surf. Coat. Technol., 2013, 237, p 357–368

    Article  Google Scholar 

  29. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S.J. Dowey, Plasma Electrolysis for Surface Engineering, Surf. Coat. Technol., 1999, 122, p 73–93

    Article  Google Scholar 

  30. L. Zhao, C. Cui, Q. Wang, and S. Bu, Growth Characteristics and Corrosion Resistance of Micro-Arc Oxidation Coating on Pure Magnesium for Biomedical Applications, Corros. Sci., 2010, 52, p 2228–2234

    Article  Google Scholar 

  31. H. Fukuda and Y. Matsumoto, Effects of Na2SiO3 on Anodization of Mg-Al-Zn Alloy in 3M KOH Solution, Corros. Sci., 2004, 46, p 2135–2142

    Article  Google Scholar 

  32. Y. Ma, X. Nie, D.O. Northwood, and H. Hu, Systematic Study of the Electrolytic Plasma Oxidation Process on a Mg Alloy for Corrosion Protection, Thin Solid Films, 2006, 494, p 296–301

    Article  Google Scholar 

  33. A.K. Sharma, R.U. Rani, and S.M. Mayanna, Thermal Studies on Electrodeposited Black Oxide Coating on Magnesium Alloys, Thermochim. Acta., 2001, 376, p 67–75

    Article  Google Scholar 

  34. Y. Zhang, C. Yan, F. Wang, and W. Li, Electrochemical Behavior of Anodized Mg Alloy AZ91D in Chloride Containing Aqueous Solution, Corros. Sci., 2005, 47, p 2816–2831

    Article  Google Scholar 

  35. R.F. Zhang and S.F. Zhang, Formation of Micro-Arc Oxidation Coatings on AZ91HP Magnesium Alloys, Corros. Sci., 2009, 51, p 2820–2825

    Article  Google Scholar 

  36. J.M. Albella, I. Montero, and J.M. Martinez-Duart, A Theory of Avalanche Breakdown During Anodic Oxidation, Electrochim. Acta., 1987, 32, p 255–258

    Article  Google Scholar 

  37. A.K. Vijh, Sparking Voltages and Side Reactions During Anodization of Valve Metals in Terms of Electron Tunneling, Corros. Sci., 1971, 11, p 411–417

    Article  Google Scholar 

  38. A.K. Sharma, R.U. Rani, and A. Malek, Black Anodizing of a Magnesium-Lithium Alloy, Met. Finish., 1996, 94, p 16–27

    Article  Google Scholar 

  39. X. Zhou, G.E. Thompson, P. Skeldon, G.C. Wood, K. Shimizu, and H. Habazaki, Film Formation and Detachment During Anodizing of Al-Mg Alloys, Corros. Sci., 1999, 41, p 1599–1613

    Article  Google Scholar 

  40. K. Venkateswarlu, N. Rameshbabu, D. Sreekanth, A.C. Bose, V. Muthupandi, N.K. Babu, and S. Subramanian, Role of Electrolyte Additives on In-Vitro Electrochemical Behavior of Micro Arc Oxidized Titania Films on Cp Ti, Appl. Surf. Sci., 2012, 258, p 6853–6863

    Article  Google Scholar 

  41. S. Yagi, A. Sengoku, K. Kubota, and E. Matsubara, Surface Modification of ACM522 Magnesium Alloy by Plasma Electrolytic Oxidation in Phosphate Electrolyte, Corros. Sci., 2012, 57, p 74–80

    Article  Google Scholar 

  42. K.M. Lee, K.R. Shin, S. Namgung, B. Yoo, and D.H. Shin, Electrochemical Response of ZrO2-Incorporated Oxide Layer on AZ91 Mg Alloy Processed by Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2011, 205, p 3779–3784

    Article  Google Scholar 

  43. Y.G. Ko, S. Namgung, and D.H. Shin, Correlation Between KOH Concentration and Surface Properties of AZ91 Magnesium Alloy Coated by Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2010, 205, p 2525–2531

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (11374080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Wang, R., Zhang, Y. et al. Study of Coating Growth Behavior During the Plasma Electrolytic Oxidation of Magnesium Alloy ZK60. J. of Materi Eng and Perform 24, 1483–1491 (2015). https://doi.org/10.1007/s11665-015-1422-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1422-4

Keywords

Navigation