Skip to main content
Log in

Versatile self-catalyzed growth of freestanding zinc blende/wurtzite InP nanowires on an aerographite substrate for single-nanowire light detection

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The self-catalyzed growth of InP nanowires on an aerographite substrate is demonstrated in this study by using high growth rate hydride vapor-phase epitaxy technology. Nanowires with aspect ratios higher than 200 and diameters of 0.2–2 μm were analyzed by scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray analysis, Raman spectroscopy, and photoelectrical characterization. The nanowires were found to be of constant diameter over their length, except for a well-faceted hexagonal tapered end. The novel growth process results in formation of self-catalyzed nanowires compatible with integrated circuit technology. Single-wire InP photodetectors with predominant sensitivity in the infrared spectral range have been prepared and characterized.

Impact statement

Semiconductor nanowires gain wider application in light and gas sensors, memory and memristive devices. In this article, we describe a fast and rather simple approach of fabricating catalyst-free InP nanowires with aspect ratio of 200. Important benefits of this method are stoichiometric chemical composition and freestanding arrangement of wires on the aerographite substrate. We demonstrate the development of a robust IR single-nanowire sensor stable at 20–300 K both in the air and vacuum atmosphere, with Iph/Idark ratio in the range 4–1.7.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding authors.

References

  1. D. Li, Z. Wang, F. Gao, Nanotechnology 21, 505709 (2010). https://doi.org/10.1088/0957-4484/21/50/505709

    Article  CAS  Google Scholar 

  2. M. Luo, F. Ren, N. Gagrani, K. Qiu, Q. Wang, L. Yu, J. Ye, F. Yan, R. Zhang, H.H. Tan, C. Jagadish, X. Ji, Adv. Opt. Mater. 8(17), 2000514 (2020). https://doi.org/10.1002/adom.202000514

    Article  CAS  Google Scholar 

  3. M. Mecklenburg, A. Schuchardt, Y.K. Mishra, S. Kaps, R. Adelung, A. Lotnyk, L. Kienle, K. Schulte, Adv. Mater. 24(26), 3486 (2012). https://doi.org/10.1002/adma.201200491

    Article  CAS  Google Scholar 

  4. A. Schuchardt, T. Braniste, Y.K. Mishra, M. Deng, M. Mecklenburg, M.A. Stevens-Kalceff, S. Raevschi, K. Schulte, L. Kienle, R. Adelung, I. Tiginyanu, Sci. Rep. 5, 8839 (2015). https://doi.org/10.1038/srep08839

    Article  CAS  Google Scholar 

  5. I. Tiginyanu, L. Ghimpu, J. Gröttrup, V. Postolache, M. Mecklenburg, M.A. Stevens-Kalceff, V. Ursaki, N. Payami, R. Feidenhansl, K. Schulte, R. Adelung, Y.K. Mishra, Sci. Rep. 6, 32913 (2016). https://doi.org/10.1038/srep32913

    Article  CAS  Google Scholar 

  6. I. Plesco, J. Strobel, F. Schütt, C. Himcinschi, N.B. Sedrine, T. Monteiro, M.R. Correia, L. Gorceac, B. Cinic, V. Ursaki, J. Marx, B. Fiedler, Y.K. Mishra, L. Kienle, R. Adelung, I. Tiginyanu, Sci. Rep. 8, 13880 (2018). https://doi.org/10.1038/s41598-018-32005-0

    Article  CAS  Google Scholar 

  7. I. Plesco, M. Dragoman, J. Strobel, L. Ghimpu, F. Schütt, A. Dinescu, V. Ursaki, L. Kienle, R. Adelung, I. Tiginyanu, Superlattices Microstruct. 117, 418 (2018). https://doi.org/10.1016/j.spmi.2018.03.064

    Article  CAS  Google Scholar 

  8. M. Moewe, L.C. Chuang, V.G. Dubrovskii, C. Chang-Hasnain, J. Appl. Phys. 104(4), 044313 (2008). https://doi.org/10.1063/1.2968345

    Article  CAS  Google Scholar 

  9. T. Akiyama, K. Sano, K. Nakamura, T. Ito, Jpn. J. Appl. Phys. 45, L275 (2006). https://doi.org/10.1143/JJAP.45.L275

    Article  CAS  Google Scholar 

  10. S. Paiman, Q. Gao, H.H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H.E. Jackson, L.M. Smith, J.M. Yarrison-Rice, X. Zhang, J. Zou, Nanotechnology 20(22), 225606 (2009). https://doi.org/10.1088/0957-4484/20/22/225606

    Article  CAS  Google Scholar 

  11. C. Kauppinen, T. Haggren, H. Lipsanen, M. Sopanen, Appl. Phys. Lett. 116, 093101 (2020). https://doi.org/10.1063/1.5134964

    Article  CAS  Google Scholar 

  12. H.-J. Chu, T.-W. Yeh, L. Stewart, P.D. Dapkus, Phys. Status Solidi C 7(10), 2494 (2010). https://doi.org/10.1002/pssc.200983910

    Article  CAS  Google Scholar 

  13. Y. Kitauchi, Y. Kobayashi, K. Tomioka, S. Hara, K. Hiruma, T. Fukui, J. Motohisa, Nano Lett. 10(5), 1699 (2010). https://doi.org/10.1021/nl1000407

    Article  CAS  Google Scholar 

  14. Wallentin, J.M. Persson, J.B. Wagner, L. Samuelson, K. Deppert, M.T. Borgström, Nano Lett. 10, 974 (2010). https://doi.org/10.1021/nl903941b

    Article  CAS  Google Scholar 

  15. K. Peng, P. Parkinson, J.L. Boland, Q. Gao, Y.C. Wenas, C.L. Davies, Z. Li, L. Fu, M.B. Johnston, H.H. Tan, C. Jagadish, Nano Lett. 16(8), 4925 (2016). https://doi.org/10.1021/acs.nanolett.6b01528

    Article  CAS  Google Scholar 

  16. K. Ikejiri, Y. Kitauchi, K. Tomioka, J. Motohisa, T. Fukui, Nano Lett. 11(10), 4314 (2011). https://doi.org/10.1021/nl202365q

    Article  CAS  Google Scholar 

  17. Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H.H. Tan, C. Jagadish, Nano Lett. 14(9), 5206 (2014). https://doi.org/10.1021/nl5021409

    Article  CAS  Google Scholar 

  18. F. Ishizaka, Y. Hiraya, K. Tomioka, J. Motohisa, T. Fukui, Nano Lett. 17(3), 1350 (2017). https://doi.org/10.1021/acs.nanolett.6b03727

    Article  CAS  Google Scholar 

  19. K. Kawaguchi, H. Sudo, M. Matsuda, M. Ekawa, T. Yamamoto, Y. Arakawa, Mater. Res. Soc. Symp. Proc. 1659, 181 (2014)

    Article  Google Scholar 

  20. L. Gao, R.L. Woo, B. Liang, M. Pozuelo, S. Prikhodko, M. Jackson, N. Goel, M.K. Hudait, D.L. Huffaker, M.S. Goorsky, S. Kodambaka, R.F. Hicks, Nano Lett. 9(6), 2223 (2009). https://doi.org/10.1021/nl803567v

    Article  CAS  Google Scholar 

  21. V. Dhaka, V. Pale, V. Khayrudinov, J.-P. Kakko, T. Haggren, H. Jiang, E. Kauppinen, H. Lipsanen, Nanotechnology 27(50), 505606 (2016). https://doi.org/10.1088/0957-4484/27/50/505606

    Article  CAS  Google Scholar 

  22. S. Bhunia, T. Kawamura, S. Fujikawa, K. Tokushima, Y. Watanabe, Physica E 21(2–4), 583 (2004). https://doi.org/10.1016/j.physe.2003.11.083

    Article  CAS  Google Scholar 

  23. P.J. Poole, D. Dalacu, X. Wu, J. Lapointe, K. Mnaymneh, Nanotechnology 23(38), 385205 (2012). https://doi.org/10.1088/0957-4484/23/38/385205

    Article  CAS  Google Scholar 

  24. J. Sun, Y. Yin, M. Han, Z. Yang, C. Lan, L. Liu, Y. Wang, N. Han, L. Shen, X. Wu, J.C. Ho, ACS Nano 12(10), 10410 (2018). https://doi.org/10.1021/acsnano.8b05947

    Article  CAS  Google Scholar 

  25. D. Jishiashvili, Z. Shiolashvili, N. Makhatadze, A. Jishiashvili, B. Buadze, L. Chkhartishvili, Nano Stud. 12, 79 (2015)

    Google Scholar 

  26. H. Kamimura, C.J. Dalmaschio, S.C. Carrocine, A.D. Rodrigues, R.C. Gouveia, E.R. Leite, A.J. Chiquito, Mater. Res. Express 2(4), 045012 (2015). https://doi.org/10.1088/2053-1591/2/4/045012

    Article  CAS  Google Scholar 

  27. F. Wang, C. Wang, Y. Wang, M. Zhang, Z. Han, S. Yip, L. Shen, N. Han, E.Y.B. Pun, J.C. Ho, Sci. Rep. 6, 32910 (2016). https://doi.org/10.1038/srep32910

    Article  CAS  Google Scholar 

  28. A.T. Hui, F. Wang, N. Han, S. Yip, F. Xiu, J.J. Hou, Y.-T. Yen, T. Hung, Y.-L. Chueh, J.C. Ho, J. Mater. Chem. 22, 10704 (2012). https://doi.org/10.1039/C2JM31232H

    Article  CAS  Google Scholar 

  29. C. Liu, L. Dai, L.P. You, W.J. Xu, G.G. Qin, Nanotechnology 19(46), 465203 (2008). https://doi.org/10.1088/0957-4484/19/46/465203

    Article  CAS  Google Scholar 

  30. D. Jishiashvili, Z. Shiolashvili, N. Makhatadze, A. Jishiashivili, V. Gobronidze, D. Sukhanov, Eur. Chem. Bull. 4(1), 24 (2015)

    Google Scholar 

  31. X. Duan, C.M. Lieber, Adv. Mater. 12, 298 (2000). https://doi.org/10.1002/(SICI)1521-4095(200002)12:4%3c298::AID-ADMA298%3e3.0.CO;2-Y

    Article  CAS  Google Scholar 

  32. M.S. Gudiksen, J. Wang, C.M. Lieber, J. Phys. Chem. B 105, 4062 (2001). https://doi.org/10.1021/ja002008e

    Article  CAS  Google Scholar 

  33. M. Tchernycheva, Nano Lett. 7, 1500 (2007). https://doi.org/10.1021/nl070228l

    Article  CAS  Google Scholar 

  34. M. Chashnikova, A. Mogilatenko, O. Fedosenko, V. Bryksa, A. Petrov, S. Machulik, M.P. Semtsiv, W. Neumann, W.T. Masselink, J. Cryst. Growth 323(1), 319 (2011). https://doi.org/10.1016/j.jcrysgro.2010.10.219

    Article  CAS  Google Scholar 

  35. J. Vukajlovic-Plestina, W. Kim, L. Ghisalberti, G. Varnavides, G. Tütüncuoglu, H. Potts, M. Friedl, L. Güniat, W.C. Carter, V.G. Dubrovskii, A. Fontcuberta i Morral, Nat. Commun. 10, 869 (2019). https://doi.org/10.1038/s41467-019-08807-9

    Article  CAS  Google Scholar 

  36. C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A. Fontcuberta i Morral, Phys. Rev. B 77(15), 155326 (2008). https://doi.org/10.1103/PhysRevB.77.155326

    Article  CAS  Google Scholar 

  37. K.W. Kolasinski, Curr. Opin. Solid State Mater. Sci. 10, 182 (2006). https://doi.org/10.1016/j.cossms.2007.03.002

    Article  CAS  Google Scholar 

  38. S.N. Mohammad, J. Chem. Phys. 125, 094705 (2006). https://doi.org/10.1063/1.2229195

    Article  CAS  Google Scholar 

  39. J.H. Park, M. Pozuelo, P.D. Bunga, B.P.D. Setiawan, C.-H. Chung, Nanoscale Res. Lett. 11, 208 (2016). https://doi.org/10.1186/s11671-016-1427-4

    Article  CAS  Google Scholar 

  40. E.A. Anyebe, I. Sandall, Z.M. Jin, A.M. Sanchez, M.K. Rajpalke, T.D. Veal, Y.C. Cao, H.D. Li, R. Harvey, Q.D. Zhuang, Sci. Rep. 7, 46110 (2017). https://doi.org/10.1038/srep46110

    Article  CAS  Google Scholar 

  41. J.H. Park, C.H. Chung, Nanoscale Res. Lett. 14, 355 (2019). https://doi.org/10.1186/s11671-019-3193-6

    Article  CAS  Google Scholar 

  42. K. Nakada, A. Ishii, DFT Calculation for Adatom Adsorption on Graphene, Graphene Simulation (InTech, London, 2011)

    Google Scholar 

  43. E.G. Gadret, M.M. de Lima Jr., J.R. Madureira, T. Chiaramonte, M.A. Cotta, F. Iikawa, A. Cantarero, Appl. Phys. Lett. 102, 122101 (2013). https://doi.org/10.1063/1.4798324

    Article  CAS  Google Scholar 

  44. A.J. Lohn, T. Onishi, N.P. Kobayashi, Nanotechnology 21, 355702 (2010). https://doi.org/10.1088/0957-4484/21/35/355702

    Article  CAS  Google Scholar 

  45. A. Mooradian, G.B. Wright, Solid State Commun. 4, 431 (1966). https://doi.org/10.1016/0038-1098(66)90321-8

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the National Agency for Research and Development of Moldova under Grant  No. 20.80009.5007.20.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, I.T., I.J., and V.U.; validation, I.T. and U.S.; investigation, I.J., V.C., J.S., L.G., and B.C.; writing—original draft preparation, I.J., V.U.; writing—review and editing, all authors contributed; visualization, I.J., J.S., U.S., and V.C.; supervision, I.T., L.K., R.A., L.G.; project administration, I.T.; funding acquisition, I.T., L.K. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ion Tiginyanu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, I., Strobel, J., Schürmann, U. et al. Versatile self-catalyzed growth of freestanding zinc blende/wurtzite InP nanowires on an aerographite substrate for single-nanowire light detection. MRS Bulletin 48, 881–889 (2023). https://doi.org/10.1557/s43577-023-00524-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-023-00524-5

Keywords

Navigation