Skip to main content
Log in

The effect of H2 distribution in (Pb,La)(Zr,Ti)O3 capacitors with conductive oxide electrodes on the degradation of ferroelectric properties

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We fabricated ferroelectric (Pb,La)(Zr,Ti)O3 (PLZT) capacitors with Sn:In2O3 (ITO) top electrodes using chemical solution deposition. Then, the effects of a thin conductive ITO buffer layer between the Pt bottom electrode and PLZT thin film were investigated in combination with top electrode (ITO/PLZT/ITO/Pt). The H2 degradation resistance of ITO/PLZT/ITO/Pt capacitors with a 3- and 28-nm-thick buffer layer was improved to 78 and 85%, respectively, from 60% without a buffer layer. The time-of-flight secondary ion mass spectrometry profiles indicated the intensity of H ion increased after 45 min forming gas (3% H2/balance N2) annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kim {etet al.}, Microelectron. Reliab. 43, 385 (2003).

    Article  CAS  Google Scholar 

  2. Y. Fujisaki, Jpn. J. Appl. Phys. 52, 040001 (2013).

    Article  Google Scholar 

  3. Y. Arimoto {etet al.}, MRS Bull. 29, 823 (2004).

    Article  CAS  Google Scholar 

  4. Z. Jia {etet al.}, J. Phys. D: Appl. Phys. 39, 2587 (2006).

    Article  CAS  Google Scholar 

  5. M.-M. Zhang {etet al.}, Solid-State Electron. 53, 473 (2009).

    Article  CAS  Google Scholar 

  6. R. Guo {etet al.}, Nat. Commun. 4, 1990 (2013).

    Article  Google Scholar 

  7. S.-G. Yoon {etet al.}, J. Mater. Res. 16, 1185 (2001).

    Article  CAS  Google Scholar 

  8. K. Kushida-Abdelghafar {etet al.}, Jpn. J. Appl. Phys. 36, L1032 (1997).

    Article  Google Scholar 

  9. S.-O. Chung {etet al.}, Jpn. J. Appl. Phys. 39, 1203 (2000).

    Article  CAS  Google Scholar 

  10. D. P. Vijay {etet al.}, J. Electrochem. Soc. 140, 2640 (1993).

    Article  CAS  Google Scholar 

  11. Y. Shimamoto {etet al.}, Appl. Phys. Lett. 70, 3096 (1997).

    Article  CAS  Google Scholar 

  12. Y. Fujisaki {etet al.}, J. Appl. Phys. 82, 341 (1997).

    Article  CAS  Google Scholar 

  13. S. Aggarwal {etet al.}, Appl. Phys. Lett. 73, 1973 (1998).

    Article  CAS  Google Scholar 

  14. W. Hui {etet al.}, Phys.. Status Solidi A 209, 1109 (2012).

    Article  CAS  Google Scholar 

  15. S. Aggarwal {etet al.}, Appl. Phys. Lett. 74, 3023 (1999).

    Article  CAS  Google Scholar 

  16. H. J. Joo {etet al.}, Ferroelectrics 272, 149 (2002).

    Article  CAS  Google Scholar 

  17. K. Niwa {etet al.}, Acta Mater. 48, 4755 (2000).

    Article  CAS  Google Scholar 

  18. S. Seo {etet al.}, Appl. Phys. Lett. 81, 1857 (2002).

    Article  CAS  Google Scholar 

  19. J.-P. Han {etet al.}, Appl. Phys. Lett. 71, 1267 (1997).

    Article  CAS  Google Scholar 

  20. C.-K. Huang {etet al.}, J. Appl. Phys. 98, 104105 (2005).

    Article  Google Scholar 

  21. D.-C. Kim {etet al.}, Jpn. J. Appl. Phys. 41, 1470 (2002).

    Article  CAS  Google Scholar 

  22. L. Kerkache {etet al.}, J. Alloys Compd. 509, 6072 (2011).

    Article  CAS  Google Scholar 

  23. A. V. Rao {etet al.}, Mater. Lett. 29, 255 (1996).

    Article  CAS  Google Scholar 

  24. L. Kerkache {etet al.}, J. Phys. D: Appl. Phys. 39, 184 (2006).

    Article  CAS  Google Scholar 

  25. Y. Takada {etet al.}, Int. J. mater. Res. 106, 83 (2015).

    Article  CAS  Google Scholar 

  26. Y. Takada {etet al.}, Electron. Lett. 50, 799 (2014).

    Article  CAS  Google Scholar 

  27. E. S. Lee {etet al.}, J. Appl. Phys. 100, 024107 (2006).

    Article  Google Scholar 

  28. T. S. Kim {etet al.}, J. Vac. Sci. Technol. A 15, 2831 (1997).

    Article  CAS  Google Scholar 

  29. A. Bhaskar {etet al.}, Appl. Surf. Sci. 255, 3795 (2009).

    Article  CAS  Google Scholar 

  30. K. H. Yoon {etet al.}, J. Appl. Phys. 83, 3626 (1998).

    Article  CAS  Google Scholar 

  31. C.-S. Liang {etet al.}, Electrochem. Solid-State Lett. 8, F29 (2005).

    Article  CAS  Google Scholar 

  32. W. Hartner {etet al.}, Appl. Phys. A 77, 571 (2003).

    Article  CAS  Google Scholar 

  33. J. S. Cross {etet al.}, J. Appl. Phys. 98, 094107 (2005).

    Article  Google Scholar 

Download references

Acknowledgments

The Pt-sputtered substrates were supplied by Fujitsu Semiconductor Limited. Part of this work was carried out with the support of the Nanotechnology Open Facilities at Osaka University, the Visiting Researcher’s Program of the Institute for Materials Research, Tohoku University, and the Cooperative Research Program of “Network Joint Research Center for Materials and Devices”. This study was supported by the NIMS Nanofabrication Platform in Nanotechnology Platform Project sponsored by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT). This work was supported by a Grant-in-Aid for JSPS Fellows (Grant Number 1481004000).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takada, Y., Okamoto, N., Saito, T. et al. The effect of H2 distribution in (Pb,La)(Zr,Ti)O3 capacitors with conductive oxide electrodes on the degradation of ferroelectric properties. MRS Online Proceedings Library 1729, 93–98 (2014). https://doi.org/10.1557/opl.2015.263

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.263

Navigation