We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Advertisement

Log in

Dielectric properties and energy-storage performances of (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 relaxor ferroelectric thin films

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 [(1 − x)PMN–xPT] relaxor ferroelectric thin films with x = 0.1, 0.2 and 0.3 were deposited on LaNiO3(100)/Pt(111)/TiO2/SiO2/Si substrates by the radio-frequency magnetron sputtering technique. The dielectric properties and energy-storage performances of these films were investigated in detail. X-ray diffraction spectra indicated that the thin films crystallized into a pure perovskite phase after annealed at 700 °C. Moreover, all the (1 − x)PMN–xPT thin films showed the uniform and crack-free microstructure. With PT content increasing, the dielectric constant and the maximum polarization of the films increased gradually. A maximum recoverable energy-storage density of 31 J/cm3 was achieved in the thin films with x = 0.2 under 2000 kV/cm at room temperature. Thus, (1 − x)PMN–xPT thin films with proper chemical composition are a promising candidate for high energy-storage capacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Hao, J. Zhai, L.B. Kong, Z. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 63, 1–57 (2014)

    Article  Google Scholar 

  2. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006)

    Article  Google Scholar 

  3. T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G.C. Correia, A lead-free and high-energy density ceramic for energy storage applications. J. Am. Ceram. Soc. 96, 2699–2702 (2013)

    Article  Google Scholar 

  4. B. Ma, D.-K. Kwon, M. Narayanan, U. Balachandran, Dielectric properties and energy storage capability of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film-on-foil capacitors. J. Mater. Res. 24, 2993–2996 (2011)

    Article  Google Scholar 

  5. B. Ma, S. Tong, M. Narayanan, S. Liu, S. Chao, U. Balachandran, Fabrication and dielectric property of ferroelectric PLZT films grown on metal foils. Mater. Res. Bull. 46, 1124–1129 (2011)

    Article  Google Scholar 

  6. L. Zhang, X. Hao, L. Zhang, J. Yang, S. An, Microstructure and energy-storage performance of BaO–B2O3–SiO2 glass added (Na0.5Bi0.5)TiO3 thick films. J. Mater. Sci. Mater. Electron. 24, 3830–3835 (2013)

    Article  Google Scholar 

  7. T. Chen, J. Wang, X. Zhong, F. Wang, B. Li, Y. Zhou, High energy density capacitors based on 0.88BaTiO3–0.12Bi(Mg0.5, Ti0.5)O3/PbZrO3 multilayered thin films. Ceram. Int. 40, 5327–5332 (2014)

    Article  Google Scholar 

  8. Y. Zhao, X. Hao, M. Li, Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3 thick films. J. Alloys Compd. 601, 112–115 (2014)

    Article  Google Scholar 

  9. Y. Zhao, X. Hao, Q. Zhang, Energy-storage properties and electrocaloric effect of Pb(1−3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl. Mater. Interfaces 6, 11633–11639 (2014)

    Article  Google Scholar 

  10. T. Wang, L. Jin, C. Li, H. Qingyuan, X. Wei, Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98, 559–566 (2015)

    Article  Google Scholar 

  11. L. Zhang, X. Hao, J. Yang, S. An, B. Song, Large enhancement of energy-storage properties of compositional graded (Pb1−xLax)(Zr0.65Ti0.35)O3 relaxor ferroelectric thick films. Appl. Phys. Lett. 103, 113902-1–113902-3 (2013)

    Google Scholar 

  12. Y. Liu, X. Hao, S. An, Significant enhancement of energy-storage performance of (Pb0.91La0.09)(Zr0.65Ti0.35)O3 relaxor ferroelectric thin films by Mn doping. J. Appl. Phys. 114, 174102-1–174102-6 (2013)

    Google Scholar 

  13. V.S. Puli, D.K. Pradhan, B.C. Riggs, D.B. Chrisey, R.S. Katiyar, Investigations on structure, ferroelectric, piezoelectric and energy storage properties of barium calcium titanate (BCT) ceramics. J. Alloys Compd. 584, 369–373 (2014)

    Article  Google Scholar 

  14. H. Qingyuan, L. Jin, T. Wang, C. Li, Z. Xing, X. Wei, Dielectric and temperature stable energy storage properties of 0.88BaTiO3–0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloys Compd. 640, 416–420 (2015)

    Article  Google Scholar 

  15. Z. Hun, B. Ma, S. Liu, M. Narayanan, U. Balachandran, Relaxor behavior and energy storage performance of ferroelectric PLZT thin films with different Zr/Ti ratios. Ceram. Int. 40, 557–562 (2014)

    Article  Google Scholar 

  16. Z. Xie, Z. Yue, G. Ruehl, B. Peng, J. Zhang, Q. Yu, X. Zhang, L. Li, Bi(Ni1/2Zr1/2)O3–PbTiO3 relaxor-ferroelectric films for piezoelectric energy harvesting and electrostatic storage. Appl. Phys. Lett. 104, 243902-1–243902-5 (2014)

    Google Scholar 

  17. M. Detalle, G. Wang, D. Rémiens, P. Ruterana, P. Roussel, B. Dkhil, Comparison of structural and electrical properties of PMN–PT films deposited on Si with different bottom electrodes. J. Cryst. Growth 305, 137–143 (2007)

    Article  Google Scholar 

  18. T.R. Shrout, J. Fielding Jr, Relaxor ferroelectric materials. Proc. IEEE Ultrason. Symp. 2, 711–720 (1990)

    Article  Google Scholar 

  19. D. Dimos, S.J. Lockwood, R.W. Schwartz, Thin-film decoupling capacitors for multichip modules. IEEE Trans. Compon. Packag. Manuf. Technol. 18, 174–179 (1995)

    Article  Google Scholar 

  20. R. Herdier, M. Detalle, D. Jenkins, C. Soyer, D. Remiens, Piezoelectric thin films for MEMS applications—a comparative study of PZT, 0.7PMN–0.3PT and 0.9PMN–0.1PT thin films grown on Si by r.f. magnetron sputtering. Sens. Actuators A 148, 122–128 (2008)

    Article  Google Scholar 

  21. X. Wang, L. Zhang, X. Hao, S. An, High energy-storage performance of 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 relaxor ferroelectric thin films prepared by RF magnetron sputtering. Mater. Res. Bull. 65, 73–79 (2015)

    Article  Google Scholar 

  22. J. Ge, D. Remiens, X. Dong, Y. Chen, J. Costecalde, F. Gao, F. Cao, G. Wang, Enhancement of energy storage in epitaxial PbZrO3 antiferroelectric films using strain engineering. Appl. Phys. Lett. 105, 112908-1–112908-5 (2014)

    Google Scholar 

  23. X. Hao, J. Zhai, F. Ahang, J. Zhou, S. An, Orientation-dependent phase switching process ad strain of Pb0.97La0.02(Zr0.85Sn0.13Ti0.02)O3 antiferroelectric thin films. J. Appl. Phys. 107, 116101-1–116101-3 (2010)

    Google Scholar 

  24. S.Y. Chen, I.W. Chen, Temperature–time texture transition of Pb(Zr1−xTix)O3 thin films: I, role of Pb-rich intermediate phase. J. Am. Ceram. Soc. 77, 2332–2336 (1994)

    Article  Google Scholar 

  25. S.Y. Chen, I.W. Chen, Temperature–time texture transition of Pb(Zr1−xTix)O3 thin films: II, heat treatment and compositional effects. J. Am. Ceram. Soc. 77, 2337–2344 (1994)

    Article  Google Scholar 

  26. M. Tyunina, J. Levoska, Dielectric anomalies in epitaxial films of relaxor ferroelectric (PbMg1/3Nb2/3O3)0.68–(PbTiO3)0.32. Phys. Rev. B 63, 224102-1–224102-8 (2001)

    Article  Google Scholar 

  27. D.-H. Suh, D.-H. Lee, N.-K. Kim, Phase developments and dielectric/ferroelectric responses in the PMN–PT system. J. Eur. Ceram. Soc. 22, 219–223 (2002)

    Article  Google Scholar 

  28. M. Detallea, A. Ferri, A. Da Costa, R. Desfeux, C. Soyer, D. Rémiens, Nanoscale study by piezoresponse force microscopy of relaxor 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 and 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 thin films grown on platinum and LaNiO3 electrodes. Thin Solid Films 518, 4670–4674 (2010)

    Article  Google Scholar 

  29. X. Hao, J. Zhou, S. An, Effects of PbO content on the dielectric properties and energy storage performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thin films. J. Am. Ceram. Soc. 94, 1647–1650 (2011)

    Article  Google Scholar 

  30. J. Jiang, H.-H. Hwang, W.-J. Lee, S.-G. Yoon, Microstructural and electrical properties of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 (PMN–PT) epitaxial films grown on Si substrates. Sens. Actuators B 155, 854–858 (2011)

    Article  Google Scholar 

  31. X. Hao, J. Zhai, X. Yao, Dielectric tunable properties and relaxor behavior of (Pb0.5Ba0.5)ZrO3 thin films. J. Am. Ceram. Soc. 91, 4112–4114 (2008)

    Article  Google Scholar 

  32. D. Galt, J. Price, J.A. Beall, R.H. Ono, Characterization of a tunable thin film microwave YBa2Cu3O7−x/SrTiO3 coplanar capacitor. Appl. Phys. Lett. 63, 3078–3080 (1993)

    Article  Google Scholar 

  33. P.M. Suherman, T.J. Jackson, Y.Y. Tse et al., Microwave properties of Ba0.5S0.5TiO3 coplanar phase shifters. J. Appl. Phys. 99, 104101-1–104101-7 (2006)

    Article  Google Scholar 

  34. Y. Guo, D. Akai, K. Swada, M. Ishida, Ferroelectric and pyroelectric properties of highly (110)-oriented Pb(Zr0.40Ti0.60)O3 thin films grown on Pt/LaNiO3/SiO2/Si substrate. Appl. Phys. Lett. 90, 232908-1–232908-3 (2007)

    Google Scholar 

  35. R. Wongmaneerung, R. Yimnirun, S. Ananta, Fabrication and characterization of perovskite ferroelectric PMN/PT ceramic nanocomposites. J. Mater. Sci. 44, 5428–5440 (2009)

    Article  Google Scholar 

  36. B. Ma, D.K. Kwon, M. Narayanan, U.B. Balachandran, Leakage current characteristics and dielectric breakdown of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film capacitors grown on metal foils. J. Phys. D Appl. Phys. 41, 205003-1–205003-7 (2008)

    Google Scholar 

  37. L. Zhang, X. Hao, Dielectric properties and energy-storage performances of (1 − x)(Na0.5Bi0.5)TiO3−xSrTiO3 thick films prepared by screen printing technique. J. Alloys Compd. 586, 674–678 (2014)

    Article  Google Scholar 

  38. I. Stolichnov, A. Tagantsev, Space-charge influenced-injection model for conduction in Pb(ZrxTi1−x)O3 thin films. J. Appl. Phys. 84, 3216–3225 (1998)

    Article  Google Scholar 

  39. J. Miao, L. Cao, J. Yuan, W. Chen, H. Yang, X. Bo, X. Qiu, B. Zhao, Microstructure dependence of the electrical properties of (Ba, Sr)TiO3 thin film deposited on (La, Sr)MnO3 conductive layer. J. Cryst. Growth 276, 498–506 (2005)

    Article  Google Scholar 

  40. W. Bo, D. Xiao, W. Jiagang, Q. Gou, J. Zhu, Microstructure and electrical properties of (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3–x wt% ZnO lead-free piezoelectric ceramics sintered at lower temperature. J. Mater. Sci. Mater. Electron. 26, 2323–2328 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Program for New Century Excellent Talents in University, the Natural Science Foundation of Inner Mongolia (2015JQ04), the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region, and the Grassland Talent Plan of Inner Mongolia Autonomous Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xihong Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, L., Hao, X. et al. Dielectric properties and energy-storage performances of (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 relaxor ferroelectric thin films. J Mater Sci: Mater Electron 26, 9583–9590 (2015). https://doi.org/10.1007/s10854-015-3621-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3621-z

Keywords

Navigation