Skip to main content
Log in

Self-assembly of functional nanoscale materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Self-assembly techniques are powerful and efficient methods for the synthesis of nanoscale materials. Using these techniques and their combination with other bottom-up fabrication processes, materials with hierarchical features can be produced with form and function in multiple length scales. We synthesize multifunctional nanoparticles through surfactant-assisted noncovalent interactions using nanoparticle building blocks. Self-assembly of these nano-building blocks results in functional materials that exhibit well-defined morphologies and hierarchical architectures for a wide range of applications. Hierarchically structured porphyrin nanocrystals can be synthesized through surfactant micelle-confined noncovalent interactions of photoactive porphyrins. We can amplify the intrinsic advantages of individual photoactive porphyrins by engineering them into well-defined active nanostructures. Through kinetic control, these nanocrystals exhibit precisely defined size, shape, and spatial arrangement of the individual porphyrins, which facilitates intermolecular mass and energy transfer. These self-assembly techniques provide remarkable flexibility to design morphologies and architectures that produce desirable properties for practical applications including photocatalysis, photodegradation, and phototherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. D.V. Talapin, E.V. Shevchenko, Chem. Rev. 116, 10343 (2016).

    Article  CAS  Google Scholar 

  2. M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzán, ACS Nano 4, 3591 (2010).

    Article  CAS  Google Scholar 

  3. S. Chen, P. Slattum, C. Wang, L. Zang, Chem. Rev. 115, 11967 (2015).

    Article  CAS  Google Scholar 

  4. Q. Chen, N.M. Pugno, J. Mech. Behav. Biomed. Mater. 19, 3 (2013).

    Article  Google Scholar 

  5. J.S. Brown, Photochem. Photobiol. 26, 319 (1977).

    Article  CAS  Google Scholar 

  6. W. Wei, J. Sun, H. Fan, MRS Bull. 44, 178 (2019).

    Article  CAS  Google Scholar 

  7. W. Wei, F. Bai, H. Fan, Angew. Chem. Int. Ed. Engl. 58, 11956 (2019).

    Article  CAS  Google Scholar 

  8. W. Wei, F. Bai, H. Fan, iScience 11, 272 (2019).

    Article  CAS  Google Scholar 

  9. H. Fan, Chem. Commun. 1383 (2008).

  10. F. Bai, K. Bian, X. Huang, Z. Wang, H. Fan, Chem. Rev. 119, 7673 (2019).

    Article  CAS  Google Scholar 

  11. H. Fan, K. Yang, D.M. Boye, T. Sigmon, K.J. Malloy, H. Xu, G.P. López, C.J. Brinker, Science 304, 567 (2004).

    Article  CAS  Google Scholar 

  12. H. Fan, Z. Chen, C.J. Brinker, J. Clawson, T. Alam, J. Am. Chem. Soc. 127, 13746 (2005).

    Article  CAS  Google Scholar 

  13. H. Fan, E.W. Leve, C. Scullin, J. Gabaldon, D. Tallant, S. Bunge, T. Boyle, M.C. Wilson, C.J. Brinker, Nano Lett. 5, 645 (2005).

    Article  CAS  Google Scholar 

  14. H. Fan, J. Gabaldon, C.J. Brinker, Y.-B. Jiang, Chem. Commun. 2323 (2006).

  15. K. Yang, H. Fan, K.J. Malloy, C.J. Brinker, T.W. Sigmon, Thin Solid Films 491, 38 (2005).

    Article  CAS  Google Scholar 

  16. H. Fan, A. Wright, J. Gabaldon, A. Rodriguez, C.J. Brinker, Y.-B. Jiang, Adv. Funct. Mater. 16, 891 (2006).

    Article  CAS  Google Scholar 

  17. A. Wright, J. Gabaldon, D.B. Burckel, Y.-B. Jiang, Z.R. Tian, J. Liu, C.J. Brinker, H. Fan, Chem. Mater. 18, 3034 (2006).

    Article  CAS  Google Scholar 

  18. D. Dunphy, H. Fan, X. Li, J. Wang, C.J. Brinker, Langmuir 24, 10575 (2008).

    Article  CAS  Google Scholar 

  19. H. Fan, E. Leve, J. Gabaldon, A. Wright, R.E. Haddad, C.J. Brinker, Adv. Mater. 17, 2587 (2005).

    Article  CAS  Google Scholar 

  20. Z. Sun, F. Bai, H. Wu, S.K. Schmitt, D.M. Boye, H. Fan, J. Am. Chem. Soc. 131, 13594 (2009).

    Article  CAS  Google Scholar 

  21. Y. Liu, L. Wang, H. Feng, X. Ren, J. Ji, F. Bai, H. Fan, Nano Lett. 19, 2614 (2019).

    Article  CAS  Google Scholar 

  22. N. Zhang, L. Wang, H. Wang, R. Cao, J. Wang, F. Bai, H. Fan, Nano Lett. 18, 560 (2018).

    Article  CAS  Google Scholar 

  23. D. Wang, L. Niu, Z.-Y Qiao, D.-B. Cheng, J. Wang, Y. Zhong, F. Bai, H. Wang, H. Fan, ACS Nano 12, 3796 (2018).

    Article  CAS  Google Scholar 

  24. J. Wang, Y. Zhong, X. Wang, W. Yang, F. Bai, B. Zhang, L. Alarid, K. Bian, H. Fan, Nano Lett. 17, 6916 (2017).

    Article  CAS  Google Scholar 

  25. J. Wang, Y. Zhong, L. Wang, N. Zhang, R. Cao, K. Bian, L. Alarid, R.E. Haddad, F. Bai, H. Fan, Nano Lett. 16, 6523 (2016).

    Article  CAS  Google Scholar 

  26. Y. Zhong, Z. Wang, R. Zhang, F. Bai, H. Wu, R. Haddad, H. Fan, ACS Nano 8, 827 (2014).

    Article  CAS  Google Scholar 

  27. Y. Zhong, J. Wang, R. Zhang, W. Wei, H. Wang, X. Lü, F. Bai, H. Wu, R. Haddad, H. Fan, Nano Lett. 14, 7175 (2014).

    Article  CAS  Google Scholar 

  28. Z. Sun, F. Bai, H. Wu, D.M. Boye, H. Fan, Chem. Mater. 24, 3415 (2012).

    Article  CAS  Google Scholar 

  29. F. Bai, Z. Sun, H. Wu, R.E. Haddad, X. Xiao, H. Fan, Nano Lett. 11, 3759 (2011).

    Article  CAS  Google Scholar 

  30. F. Bai, Z. Sun, H. Wu, R.E. Haddad, E.N. Coker, J.Y Huang, M.A. Rodriguez, H. Fan, Nano Lett. 11, 5196 (2011).

    Article  CAS  Google Scholar 

  31. AT. Rodriguez, X. Li, J. Wang, W.A. Steen, H. Fan, Adv. Funct. Mater. 17, 2710 (2007).

    Article  CAS  Google Scholar 

  32. H. Fan, G.P. López, Langmuir 13, 119 (1997).

    Article  CAS  Google Scholar 

  33. K. Bian, H. Schunk, D. Ye, A. Hwang, T.S. Luk, R. Li, Z. Wang, H. Fan, Nat. Commun. 9, 2365 (2018).

    Article  CAS  Google Scholar 

  34. K. Bian, R. Li, H. Fan, Chem. Mater. 30, 6788 (2018).

    Article  CAS  Google Scholar 

  35. W. Wei, Y Wang, J. Ji, S. Zuo, W. Li, F Bai, H. Fan, Nano Lett. 18, 4467 (2018).

    Article  CAS  Google Scholar 

  36. B. Li, K. Bian, J.M.D. Lane, K.M. Salerno, G.S. Grest, T. Ao, R. Hickman, J. Wise, Z. Wang, H. Fan, Nat. Commun. 8, 14778 (2017).

    Article  CAS  Google Scholar 

  37. B. Li, K. Bian, X. Zhou, P. Lu, S. Liu, I. Brener, M. Sinclair, T. Luk, H. Schunk, L. Alarid, P.G. Clem, Z. Wang, H. Fan, Sci. Adv. 3 (2017).

  38. B. Li, X. Wen, R. Li, Z. Wang, P.G. Clem, H. Fan, Nat. Commun. 5, 4179 (2014).

    Article  CAS  Google Scholar 

  39. W. Li, H. Fan, J. Li, Nano Lett. 14, 4951 (2014).

    Article  CAS  Google Scholar 

  40. Z. Wang, C. Schliehe, T. Wang, Y. Nagaoka, Y.C. Cao, W.A. Bassett, H. Wu, H. Fan, H. Weller, J. Am. Chem. Soc. 133, 14484 (2011).

    CAS  Google Scholar 

  41. H. Wu, F. Bai, Z. Sun, R.E. Haddad, D.M. Boye, Z. Wang, H. Fan, Angew. Chem. Int. Ed. Engl. 49, 8431 (2010).

    Article  CAS  Google Scholar 

  42. H. Wu, F. Bai, Z. Sun, R.E. Haddad, D.M. Boye, Z. Wang, J.Y. Huang, H. Fan, J. Am. Chem. Soc. 132, 12826 (2010).

    Article  CAS  Google Scholar 

  43. H. Wu, Z. Wang, H. Fan, J. Am. Chem. Soc. 136, 7634 (2014).

    Article  CAS  Google Scholar 

  44. B. Li, D.-M. Smilgies, A.D. Price, D.L. Huber, P.G. Clem, H. Fan, ACS Nano 8, 4799 (2014).

    Article  CAS  Google Scholar 

  45. L. Fei, Y. Xu, X. Wu, G. Chen, Y. Li, B. Li, S. Deng, S. Smirnov, H. Fan, H. Luo, Nanoscale 6, 3664 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

I would like to thank the interdisciplinary team of Sandians, students, postdocs, and others who have collaborated with me to achieve scientific success. I appreciate the support from the Center for Integrated Nanotechnology, a US Department of Energy (DOE), Office of Basic Energy Sciences user facility, DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Sandia’s LDRD program, and the National Science Foundation is gratefully acknowledged. This article describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the presentation do not necessarily represent the views of the US Department of Energy or the United States Government. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the DOE’s National Nuclear Security Administration under Contract No. DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Bai.

Additional information

This article is based on the MRS Mid-Career Researcher Award presentation given by Hongyou Fan, Sandia National Laboratories and The University of New Mexico, at the 2019 MRS Spring Meeting in Phoenix, Ariz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, F., Bian, K., Li, B. et al. Self-assembly of functional nanoscale materials. MRS Bulletin 45, 135–141 (2020). https://doi.org/10.1557/mrs.2020.21

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.21

Navigation