Skip to main content
Log in

Architected mechanical designs in tissue engineering

  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The deeper comprehension of biological phenomena has led to the pursuit of designing and architecting complex biological systems. This has been incorporated through the advances in bioprinting of artificial organs and implants even at the microscale. In addition, tissue modeling has been employed to understand and prevent malfunctional and detrimental mechanisms that lead to fatal diseases. Furthermore, the endeavor to convey the mechanical properties of both scaffolds and cells has enabled the unveiling of disease modeling and regenerative medicine. This paper aims to provide a brief review of the design, modeling and characterization of conventional and architected structures employed in bioengineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  1. L. Li, J. Eyckmans, and C.S. Chen: Designer biomaterials for mechanobiology. Nat. Mater. 16, 1164–1168 (2017).

    Article  CAS  Google Scholar 

  2. W.J. Polacheck, M.L. Kutys, J.B. Tefft, and C.S. Chen: Microfabricated blood vessels for modelling the vascular transport barrier. Nat. Protoc. 14, 1425–1454 (2019).

    Article  CAS  Google Scholar 

  3. M.A. Skylar-Scott, M.-C. Liu, Y. Wu, A. Dixit, and M.F. Yanik: Guided homing of cells in multi-photon microfabricated bioscaffolds. Adv. Healthcare Mater. 5, 1233–1243 (2016).

    Article  CAS  Google Scholar 

  4. H. Jeon, S. Koo, W.M. Reese, P. Loskill, C.P. Grigoropoulos, and K.E. Healy: Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nat. Mater. 14, 918–923 (2015).

    Article  CAS  Google Scholar 

  5. J. Fu, Y.-K. Wang, M.T. Yang, R.A. Desai, X. Yu, Z. Liu, and C.S. Chen: Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7, 733–736 (2010).

    Article  CAS  Google Scholar 

  6. V. Vogel and M. Sheetz: Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

    Article  CAS  Google Scholar 

  7. F. Santoro, W. Zhao, L.-M. Joubert, L. Duan, J. Schnitker, Y. van de Burgt, H.-Y. Lou, B. Liu, A. Salleo, L. Cui, Y. Cui, and B. Cui: Revealing the cell–material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS Nano 11, 8320–8328 (2017).

    Article  CAS  Google Scholar 

  8. R.L. Satcher Jr. and C.F. Dewey Jr.: Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys. J. 71, 109–118 (1996).

    Article  Google Scholar 

  9. M. Iannone, M. Ventre, L. Formisano, L. Casalino, E.J. Patriarca, and P.A. Netti: Nanoengineered surfaces for focal adhesion guidance trigger mesenchymal stem cell self-organization and tenogenesis. Nano Lett. 15, 1517–1525 (2015).

    Article  CAS  Google Scholar 

  10. C. Storm, J.J. Pastore, F.C. MacKintosh, T.C. Lubensky, and P.A. Janmey: Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    Article  CAS  Google Scholar 

  11. K. Burridge and M.C. Wodnicka: Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12, 463–518 (1996).

    Article  CAS  Google Scholar 

  12. D.E. Discher, P. Janmey, and Y.-l. Wang: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  13. T. Yeung, P.C. Georges, L.A. Flanagan, B. Marg, M. Ortiz, M. Funaki, M. Zanir, W. Ming, V. Weaver, and P.A. Janmey: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cytoskeleton 60, 24–34 (2005).

    Article  Google Scholar 

  14. F.A. Pennachio, F. Caliendo, G. Iaccarino, A. Langella, V. Siciliano, and F. Santoro: Three-dimensionally patterned scaffolds modulate the biointerface at the nanoscale. Nano Lett. 19, 5118–5123 (2019).

    Article  CAS  Google Scholar 

  15. W. Zhao, L. Hanson, H.-Y. Lou, M. Akamatsu, P.D. Chowdary, F. Santoro, J.R. Marks, A. Grassart, D.G. Drubin, Y. Cui, and B. Cui: Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nat. Nanotechnol. 12, 750–756 (2017).

    Article  CAS  Google Scholar 

  16. C.J. Bettinger, R. Langer, and J.T. Borenstein: Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem. 48, 5406–5415 (2009).

    Article  CAS  Google Scholar 

  17. C. Fendler, C. Denker, J. Harberts, P. Bayat, R. Zierold, G. Loers, M. Munzenberg, and R.H. Blick: Microscaffolds by direct laser writing for neurite guidance leading to tailor-made neuronal networks. Adv. Biosyst. 3, 1800329 (2019).

    Article  CAS  Google Scholar 

  18. E. Kapyla, D.B. Aydogan, S. Virjula, S. Vanhatupa, S. Miettinen, J. Hyttiten, and M. Kellomaki: Direct laser writing and geometrical analysis of scaffolds with designed pore architecture for three-dimensional cell culturing. J. Micromech. Microeng. 22, 115016 (2012).

    Article  CAS  Google Scholar 

  19. S. Turunen, T. Joki, M.L. Hitunen, T.O. Ihalainen, S. Narkilahti, and M. Kellomaki: direct laser writing of tubular microtowers for 3D culture of human pluripotent stem cell-derived neuronal cells. ACS Appl. Mater. Interfaces 9, 25717–25730 (2017).

    Article  CAS  Google Scholar 

  20. D. Iandolo, F.A. Pennacchio, V. Mollo, D. Rossi, D. Dannhauser, B. Cui, R.M. Owens, and F. Santoro: Electron microscopy for 3D scaffolds–cell biointerface characterization. Adv. Biosyst. 3, 180013 (2019).

    Google Scholar 

  21. Z. Ma, N. Huebsch, S. Koo, M.A. Mandegar, B. Siemons, S. Boggess, B.R. Conklin, C.P. Grigoropoulos, and K.E. Healy: Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload. Nat. Biomed. Eng. 2, 955–967 (2018).

    Article  CAS  Google Scholar 

  22. A. Pathak, V.S. Deshpande, R.M. McMeeking, and A.G. Evans: The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J. R. Soc. Interface 5, 507–524 (2008).

    Article  Google Scholar 

  23. V.S. Deshpande, R.M. McMeeking, and A.G. Evans: A bio-chemo-mechanical model for cell contractility. PNAS 103, 14015–14020 (2006).

    Article  CAS  Google Scholar 

  24. N. Thavandiran, N. Diubois, A. Mikryukov, S. Masse, B. Beca, C.A. Simmons, V.S. Deshpande, J.P. McGarry, C.S. Chen, K. Nanthakumar, G.M. Keller, M. Radisic, and P.W. Zandstra: Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. PNAS 110, E4698–E4707 (2013).

    Article  CAS  Google Scholar 

  25. I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari: Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano 6, 2302–2311 (2012).

    Article  CAS  Google Scholar 

  26. C. Wang, S. Koo, M. Park, Z. Vangelatos, P. Hoang, B.R. Conklin, C.P. Grigoropoulos, K.E. Healy, and Z. Ma: Maladaptive contractility of 3D human cardiac microtissues to mechanical nonuniformity. Adv. Healthcare Mater. 9, 1901373 (2020).

    Article  CAS  Google Scholar 

  27. P. Soman, D.Y. Fozdar, J.W. Lee, A. Phadke, S. Varghese, and S. Chen: A three-dimensional polymer scaffolding material exhibiting a zero Poisson's ratio. Soft Matter 8, 4946–4951 (2012).

    Article  CAS  Google Scholar 

  28. A.A. Zadpoor: Meta-biomaterials. Biomater. Sci. 8, 18–38 (2020).

    Article  CAS  Google Scholar 

  29. M.E. Yildizdag, C.A. Tran, E. Barchiesi, M. Spagnuolo, F. dell'Isola, and F. Hild: A multi-disciplinary approach for mechanical metamaterial synthesis: a hierarchical modular multiscale cellular structure paradigm. In State of the Art and Future Trends in Material Modeling. Advanced Structured Materials, Vol. 100 (Springer, Cham, 2019).

    Google Scholar 

  30. F.S.L. Bobbert, S. Janbaz, T. van Manen, Y. Li, and A.A. Zadpoor: Russian doll deployable meta-implants: fusion of kirigami, origami, and multi-stability. Mater. Design 191, 108624 (2020).

    Article  Google Scholar 

  31. F.S.L. Bobbert, S. Janbaz, and A.A. Zadpoor: Towards deployable meta-implants. J. Mater. Chem. B 6, 3449–3455 (2018).

    Article  CAS  Google Scholar 

  32. P. Mardling, A. Alderson, N. Jordan-Mahy, and C.L.L. Maitre: The use of auxetic materials in tissue engineering. Biomater. Sci. 8, 2074–2083 (2020).

    Article  CAS  Google Scholar 

  33. H. Jeon, H. Hidai, D.J. Hwang, and C.P. Grigoropoulos: Fabrication of arbitrary polymer patterns for cell study by two-photon polymerization process. J. Biomed. Mater. Res. 93A, 55–66 (2010).

    Google Scholar 

  34. J. Swift, I.L. Ivanovska, A. Buxboim, T. Harada, P.C.D.P. Dingal, J. Printer, J.D. Pajerowski, K.R. Splinler, J.W. Shin, M. Tewari, F. Rehfeldt, D.W. Speicher, and D.E. Discher: Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  CAS  Google Scholar 

  35. W.J. Polacheck and C.S. Chen: Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).

    Article  CAS  Google Scholar 

  36. J. Eyckmans, T. Boudou, X. Yu, and C.S. Chen: A Hitchhiker's guide to mechanobiology. Dev. Cell 21, 35–47 (2011).

    Article  CAS  Google Scholar 

  37. C. Mohrdieck, A. Wanner, W. Roos, A. Roth, E. Sackmann, J.P. Spatz, and E. Arzt: A theoretical description of elastic pillar substrates in biophysical experiments. ChemPhysChem 6, 1492–1498 (2005).

    Article  CAS  Google Scholar 

  38. A.V. Hill: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. B 126, 136–195 (1938).

  39. H. Jeon, H. Hidai, D.J. Hwang, K.E. Healey, and C.P. Grigoropoulos: The effect of micronscale anisotropic cross patterns on fibroblast migration. Biomaterials 31, 4286–4295 (2010).

    Article  CAS  Google Scholar 

  40. H. Hidai, H. Jeon, D.J. Hwang, and C.P. Grigoropoulos: Self-standing aligned fiber scaffold fabrication by two photon photopolymerization. Biomed. Microdevices 11, 643–652 (2009).

    Article  CAS  Google Scholar 

  41. H. Jeon, E. Kim, and C.P. Grigoropoulos: Measurement of contractile forces generated by individual fibroblasts on self-standing fiber scaffolds. Biomed. Microdevices 13, 107–115 (2011).

    Article  Google Scholar 

  42. T. Boudou, W.R. Legant, A. Mu, M.A. Borochin, N. Thavandiran, M. Radisic, P.W. Zandstra, J.A. Epstein, K.B. Marguilies, and C.S. Chen: A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng. A 18, 910–919 (2011).

    Article  CAS  Google Scholar 

  43. S.V. Abramson, J.F. Burke, J.J. Kelly, J.G. Kitchen III, M.J. Dougherty, D.F. Yih, F.C. McGeehin III, J.W. Shuck, and T.P. Phiambolis: Pulmonary hypertension predicts mortality and morbidity in patients with dilated cardiomyopathy. Ann. Intern. Med. 116, 888–895 (1992).

    Article  CAS  Google Scholar 

  44. A.H. Sadeghi, S.R. Shin, J.C. Deddens, G. Fratta, S. Mandla, I.J.K. Yazdi, G. Prakash, S. Antona, D. Demarchi, M.P. Buijsrogge, J.P.G. Sluijter, J. Hjortnaes, and A. Khademhosseini: Engineered 3D cardiac fibrotic tissue to study fibrotic remodeling. Adv. Healthcare Mater. 6, 1601434 (2017).

    Article  CAS  Google Scholar 

  45. D. Dendukuri, D.C. Pregibon, J. Collins, T.A. Hatton, and P.S. Doyle: Continuous-flow lithography for high-throughput microparticle synthesis. Nat. Mater. 5, 365–369 (2006).

    Article  CAS  Google Scholar 

  46. H. Yin, Y. Ding, Y. Zhai, W. Tan, and X. Yin: Orthogonal programming of heterogeneous micro-mechano-environments and geometries in three-dimensional bio-stereolithography. Nat. Commun. 9, 4096 (2018).

    Article  CAS  Google Scholar 

  47. J.J. Warner, A.R. Gillies, H.H. Hwang, H. Zhang, R.L. Lieber, and S. Chen: 3D-printed biomaterials with regional auxetic properties. J. Mech. Behav. Biomed. Mater. 76, 145–152 (2017).

    Article  CAS  Google Scholar 

  48. G. Flamourakis, I. Spanos, Z. Vangelatos, P. Manganas, L. Papadimitriou, C. Grigoropoulos, A. Ranella, and M. Farsari: Laser-made 3D auxetic metamaterial scaffolds for tissue engineering applications. Macromol. Mater. Eng. (2020). doi:10.1002/mame.202000238.

    Google Scholar 

  49. A. Maggi, H. Li, and J.R. Greer: Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth. Acta Biomater. 63, 294–305 (2017).

    Article  CAS  Google Scholar 

  50. G.D. Mahumane, P. Kumar, L.C. du Toit, Y.E. Choonara, and V. Pillay: 3D scaffolds for brain tissue regeneration: architectural challenges. Biomater. Sci. 6, 2812–2837 (2018).

    Article  CAS  Google Scholar 

  51. H. Ma, A.R. Killaars, F.W. DelRio, C. Yang, and K.S. Anseth: Myofibroblastic activation of valvular interstitial cells is modulated by spatial variations in matrix elasticity and its organization. Biomaterials 131, 131–144 (2017).

    Article  CAS  Google Scholar 

  52. K. Bertoldi, V. Vitelli, J. Christensen, and M. van Hecke: Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 1–11 (2017).

    Article  CAS  Google Scholar 

  53. J. Bauer, L.R. Meza, T.A. Schaedler, R. Schwaiger, X. Zheng, and L. Valdevit: Nanolattices: an emerging class of mechanical metamaterials. Adv. Mater. 29, 1701850 (2017).

    Article  CAS  Google Scholar 

  54. F. Fraternali and A. Amendola: Mechanical modeling of innovative metamaterials alternating pentamode lattices and confinement plates. J. Mech. Phys. Solids 99, 259–271 (2017).

    Article  Google Scholar 

  55. J.B. Berger, H.N.G. Wadley, and R.M. McMeeking: Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 543, 533–537 (2017).

    Article  CAS  Google Scholar 

  56. M.J. Mirzaali, A. Caracciolo, H. Pahlavani, S. Janbaz, L. Vergani, and A.A. Zadpoor: Multi-material 3D printed mechanical metamaterials: rational design of elastic properties through spatial distribution of hard and soft phases. Appl. Phys. Lett. 113, 241903 (2018).

    Article  CAS  Google Scholar 

  57. S. Pok, J.D. Myers, S.V. Madihally, and J.G. Jacot: A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomater. 9, 5630–5642 (2013).

    Article  CAS  Google Scholar 

  58. K.M. Kennedy, A. Bhaw-Luximon, and D. Jhurry: Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Acta Biomater. 50, 41–55 (2017).

    Article  CAS  Google Scholar 

  59. M. Kadic, T. Bückmann, R. Schittny, P. Gumbsch, and M. Wegener: Pentamode metamaterials with independently tailored bulk modulus and mass density. Phys. Rev. Appl. 2, 054007 (2014).

    Article  CAS  Google Scholar 

  60. F. Rosso, A. Giordano, M. Barbarisi, and A. Barbarisi: From cell–ECM interactions to tissue engineering. J. Cell. Physiol. 199, 174–180 (2004).

    Article  CAS  Google Scholar 

  61. K. Uto, J.H. Tsui, C.A. DeForest, and D.-H. Kim: Dynamically tunable cell culture platforms for tissue engineering and mechanobiology. Prog. Polym. Sci. 65, 53–82 (2017).

    Article  CAS  Google Scholar 

  62. E.A. Corbin, A. Vite, E.G. Peyster, M. Bhoopalam, J. Brandimarto, X. Wang, A.I. Bennett, A.T. Clark, X. Cheng, K.T. Turner, K. Musunuru, and K.B. Margulies: Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes. ACS Appl. Mater. Interfaces 11, 20603–20614 (2019).

    Article  CAS  Google Scholar 

  63. Y. Chandorkar, A.C. Nava, S. Scheizerhof, M.V. Dongen, T. Haraszti, J. Köhler, H. Zhang, R. Windoffer, A. Mourran, M. Möller, and L. De Laporte: Cellular responses to beating hydrogels to investigate mechanotransduction. Nat. Commun. 10, 4027 (2019).

    Article  CAS  Google Scholar 

  64. P.Y. Mengsteab, K. Uto, A.S.T. Smith, S. Frankel, E. Fisher, Z. Nawas, J. Macadangdang, M. Ebara, and D.-H. Kim: Spatiotemporal control of cardiac anisotropy using dynamic nanotopographic cues. Biomaterials 86, 1–10 (2016).

    Article  CAS  Google Scholar 

  65. C.A. DeForest and D.A. Tirrell: A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14, 523–531 (2015).

    Article  CAS  Google Scholar 

  66. O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S.A. Bencherif, J.C. Weaver, N. Huebsch, H.-p. Lee, E. Lippens, G.N. Duda, and D.J. Mooney: Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    Article  CAS  Google Scholar 

  67. L.-F. Tseng, P.T. Mather, and J.H. Henderson: Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology. Acta Biomater. 9, 8790–8801 (2013).

    Article  CAS  Google Scholar 

  68. S. Sun, H. Shi, S. Moore, C. Wang, A. Ash-Shakoor, P.T. Mather, J.H. Henderson, and Z. Ma: Progressive myofibril reorganization of human cardiomyocytes on a dynamic nanotopographic substrate. ACS Appl. Mater. Interfaces 12, 21450–21462 (2020).

    Article  CAS  Google Scholar 

  69. C. Yang, M. Boorugu, A. Dopp, J. Ren, R. Martin, D. Han, W. Choi, and H. Lee: 4D printing reconfigurable, deployable and mechanically tunable metamaterials. Mater. Horiz. 6, 1244–1250 (2019).

    Article  CAS  Google Scholar 

  70. J. van der Stok, H. Wang, S.A. Yavari, M. Siebelt, M. Sandker, J.H. Waarsing, J.A.N. Verhaar, H. Jahr, A.A. Zadpoor, S.C.G. Leeuwenburgh, and H. Weinans: Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time and dose-controlled delivery of dual growth factors. Tissue Eng. A 19, 2605–2617 (2013).

    Article  CAS  Google Scholar 

  71. F. Barthelata, H. Tang, P.D. Zavattieri, C.-M. Li, and H.D. Espinosa: On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306–337 (2007).

    Article  CAS  Google Scholar 

  72. R.L. Noah, C. Hanratty, and S.J. Walsh: Clinical impact of stent design. Interv. Cardiol. Rev. 9, 89–93 (2014).

    Google Scholar 

  73. Z. Vangelatos, G.X. Gu, and C.P. Grigoropoulos: Architected metamaterials with tailored 3D buckling mechanisms at the microscale. Extreme Mech. Lett. 33, 100580 (2019).

    Article  Google Scholar 

  74. S. Leeflang, S. Janbaz, and A.A. Zadpoor: Metallic clay. Addit. Manuf. 28, 528–535 (2019).

    CAS  Google Scholar 

  75. Z. Vangelatos, V. Melissinaki, M. Farsari, K. Komvopoulos, and C. Grigoropoulos: Intertwined microlattices greatly enhance the performance of mechanical metamaterials. Math. Mech. Solids 24, 2636–2648 (2019).

    Article  Google Scholar 

  76. O. Al-Ketan and R.K.A. Al-Rub: Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv. Eng. Mater. 21, 1900524 (2019).

    Article  Google Scholar 

  77. S.K. Bhullar, D. Rana, H. Lekesiz, A.C. Bedeloglu, J. Ko, Y. Cho, Z. Ayatac, T. Uyar, M. Jun, and M. Ramalingam: Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications. Mater. Sci. Eng. C 81, 334–340 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas P. Grigoropoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vangelatos, Z., Wang, C., Ma, Z. et al. Architected mechanical designs in tissue engineering. MRS Communications 10, 379–390 (2020). https://doi.org/10.1557/mrc.2020.60

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.60

Navigation